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CHAPTER 1. INTRODUCTION 

In this dissertation, we address the problem of integrating heterogeneous, au­

tonomous and distributed database management systems (DBMSs). Today's organi­

zations rely on a multitude of different computer and database systems to function 

normally and efficiently on a day-to-day basis. These existing systems have con­

sumed significant capital investments although in most cases they have not been able 

to accommodate the increasing needs for information sharing on an intraorganiza-

tional or inter-organizational basis. Making revolutionary changes to existing or-

granizational information systems would involve extensive re-training, re-investment, 

re-organization, re-engineering and possibly other problems at the organization-wide 

level. A favorable alternative is to use multidatabase systems that support the in­

tegration and interoperation of existing database systems while preserving their au­

tonomy and functionality. The significance of multidatabase research is evidenced by 

the above facts and the numerous academic and industrial research projects. 

The issues faced by multidatabase research are dynamic due to the changing 

technologies at both the software and hardware levels. This adds to the complexity 

of proposing a solid solution and developing a realistic multidatabase system. The 

multidatabase research that sparks Project Zeus aims at bringing the existing mul­

tidatabase technology to the next level by providing a unique solution that addresses 
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multidatabase issues at both the theoretical and system development levels. Our 

approach solves the modeling and system design problems that we will explain in 

Section 1.1.1. 

This dissertation is organized as follows. The rest of this chapter presents the 

problem and covers the background material. Chapter 2 reviews related research 

in multidatabase areas. The theoretical foundation of our approach is presented in 

Chapter 3. Chapter 4 describes our design method and architectural design for a 

multidatabase system. In Chapter 5, we explain the exciting prospects of Project 

Zeus and point out our future research directions. For the remainder of this chapter, 

we describe the problems we are solving, the various terms used in this dissertation, 

how this research was originated, the scope of this research and our contributions. 

1.1 Background 

Database applications reflect the needs and functionality of organizational in­

formation systems. DBMSs provide the tools and mechanisms for the modeling, 

representation, and storage required by data and applications. Organizational com­

puting and information systems can be viewed as a multidatabase community within 

which the functional hierarchies of organizations are embedded and supported. Be­

fore we introduce the problems we are solving and detail our solution, we provide 

definitions for a number of terms used throughout this thesis. 

Multidatabase Community and Cell. A multidatabase community is 

the union of a set of applications, a set of database systems, and a set of computing 

systems: 
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MC = MCj^yjMCqDyjMCg,  where 

M.C denotes a multidatabase community, M.Cj^ denotes a set of applications, MCj) 

represents a set of database systems, and MC^ refers to a set of computing systems 

that host the elements in A4C. The scope of a multidatabase community may cross 

organizational or administrative boundaries. We refer to an administrative domain 

as a cell. Every part of MC is in some cell, but the cells may overlap. Each cell has 

its own semantics in terms of its modeling, requirements, and functionality. 

Semantic Relativism. Semantic relativism {STZ) [22] refers to the capa­

bility of supporting multiple interpretations of the same stored data. For example, 

the data stored in a purchase order database may be displayed either ordered by 

the purchase order number or grouped by the departments that issued the purchase 

orders. In a distributed multimedia information system, semantic relativism can 

be inter])reted as different ways of performing spatio-temporal composition of dis­

tributed multimedia objects [71]. The notion of semantic relativism is important in 

our research because we want to hide applications from knowledge of how to use the 

underlying DBMSs and at the same time allow different applications to have different 

views of the same data from different database systems. 

Multidatabase System and Distributed System. A multidatabase 

system is a distributed system that functions as a front-end to multiple cooperating 

DBMSs. A distributed system is a system with processing elements and computer 

peripherals, connected by a network. In a client-server model, a distributed system 

can be described as a set of cooperating servers and clients. A multidatabase system 

is capable of managing persistent data and accessing data from several databases 
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managed by heterogeneous DBMSs in a distributed system. Tlie databases involved 

are heterogeneous in the sense that they are implemented by different data models 

and are managed by different sets of operations. They are distributed in the sense 

that individual databases are under local control and are interconnected by computer 

networks. 

Distributed Abstraction Modeling. In a distributed computing envi­

ronment, we refer to distributed components such as the communications components^, 

operating systems, hardware platforms, DBMSs, and other computing systems that 

interact with one another within the computing environment. Distributed abstraction 

modeling {"DAM) refers to the capability of protecting users from the added com­

plexity of distribution and heterogeneity by providing different levels of transparency 

to the distribution and heterogeneity of distributed components. In our research, the 

notion of distributed abstraction modeling is important because we assume that the 

computing environment is distributed and our approach should be applied to a more 

global architecture in order to increase information sharing. We will give a definition 

for VAM. in Section 3.2. 

1.1.1 The Problems 

In this research, we are solving the problems related to the modeling and the 

design of multidatabase systems. Figure 1.1 shows the problems we are solving and 

the proposed solution. Part 1 of Figure 1.1 identifies four cases that exemplify the 

ways the applications interact with the participating DBMSs. Case (1) shows that 

^ For example, a network server is a communications component. 
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an application exchanges data/messages with a DBMS. In this case, the application 

only needs to know how to communicate with the DBMS. Case (2) shows that an 

application sends the same data/messages to multiple DBMSs. Since each DBMS 

may have different ways of interacting with the outside world, we expect that there 

exists a translation to make the data/messages meaningful to the receiving DBMSs. 

Case (3) indicates that an application requires to access data from multiple DBMSs 

at the same time and Case (4) shows that these data must be presented to the 

application in different ways. In real-world applications, we can find many examples 

that correspond to the above cases. It is clear that in addition to the existing DBMSs 

there is a need to provide another layer of software system that protects applications 

from having to know how to interact with each kind of DBMSs. This is the major 

problem addressed by most multidatabase research. In our research, we address 

this problem in a more global architecture because global information sharing has 

become increasingly important. We also address related issues by assuming that the 

computing environments are characterized by increasing heterogeneity, distribution, 

and cooperation. For the remainder of this section, we explain the problems and the 

associated issues along two dimensions: modeling and system design. 

Modeling. The modeling problem is to create a theoretical foundation 

that appropriately addresses the modeling and semantic issues related multidatabase 

integration. In other words, we need to model how the integration of data from 

multiple DBMSs can be represented and mapped to the requirements of applications 

in a distributed computing environment. For example, suppose that an application 

running at site A needs to bring in several image files from remote sites. The formats 
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Figure 1.1: The problems we are solving and the proposed solution. 

of these image files are all different. To relieve the application from dealing with the 

various formats, the multidatabase system must coordinate the conversion of these 

image files to the format displayable at site A. Since these image files are stored in 

remote sites, they have to be transported to site A over communications networks. 

Even after all the images files are converted and transported to site A, the application 

may integrate all the images into a text file or a single image that is meaningful in the 

context of the application domain. A multidatabase system cannot hardwire these 

solutions because whenever the multidatabase system needs to be refined or adapted 

to accommodate a new computing environment or a new DBMSs, the entire system 

design would have to be revised. This would reduce the extensibility of the system 

and hinder the possibility of applying the system to a more global architecture. We 

analyze two different aspects of this problem: 

1. To provide data for applications in a meaningful way, the representations and 

semantics of data have to be mapped to the modeling, requirements, and func­

tionality of applications. The description of such a mapping must be stable and 
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uniform. The description must be stable in the sense that it is independent of 

the representations and storage of the data involved. This is required in order 

to deal with large objects and to avoid unnecessary semantic conflicts. The de­

scription of such a mapping must be uniform in the sense that it is transparent 

to the heterogeneity of participating DBMSs and applications. This is required 

in order to keep the complexity of the system under control. 

2. In addition to describing the mappings between the representations of data 

and applications, there are other details related to how the data are retrieved, 

converted, transported, and presented to the applications; i.e., how to support 

the mappings. We want to enforce a clean separation between these details and 

the syntax and semantics of the descriptions for the mappings. Such a separa­

tion is required because how the data are presented or used by the applications 

only depends on the semantics of the data in the associated DBMSs and the 

applications. This has nothing to do with the details of the mechanisms that 

package and ship the data from DBMSs to applications. Such mechanisms are 

different for different computing environments. Application developers should 

be protected from needing to know these mechanisms. From system developer's 

point of view, the separation also simplifies the system design. 

System Design. To achieve global information sharing, we expect that 

a multidatabase system will be deployed in many different computing environments. 

The multidatabase community will be hosted by a more global architecture. We can­

not afford to redo the system design for each kind of computing environement. We 

also want to avoid making significant changes to the system design upon additions of 
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new DBMSs or applications. Otherwise, the system development would be too com­

plicated and the system maintenance would be unwieldy. We need a system design 

method that achieves the following design criteria: portability, scalability, interop­

erability and extensibility. Portability ensures that the system design and even 

the source of the system can be used in different computing environments without 

significant change. Scalability means that the increase in the number of participat­

ing sites will not have major impact on the system design. Interoperability refers 

to the capability of multiple multidatabase systems to interoperate with each other 

and with the computing environment. Finally, the system must be extensible to 

accommodate the heterogeneity of new cooperating DBMSs and evolving computing 

environments without corrupting other design criteria. 

1.1.2 The Proposed Solution 

Figure 1.1 gives an overview of our proposed solution. The problem related to 

modeling should be addressed by a rigorous theoretical foundation that can later 

be expanded and be used to verify whether the modeling issues are properly dealt 

with in the system design. Our research was motivated by the idea of partial in­

tegration of nuiltiple DBMSs. The view concept was introduced into our approach 

for  two reasons.  Firs t ,  there  exis ts  an analogy between integrat ing mult iple  DBMSs 

and constructing views from existing views. Second, The notion of views is the most 

natural way to implement semantic relativism[22]. We use the layering technicjue 

to simplify the integration model which forms the core of our view mechanism, the 

Zeus View Mechanism [ZVM.). The layered architecture also separates the map­

pings of  the  semantics  of  data  from the detai ls  of  how to  ship the data .  The ZVM. 
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hides apphcations from the details of how to use the underlying DBMSs and at the 

same time allows different applications to have different views of the same data from 

different database systems. In other words, the ZVM. create a uniform interface for 

applications to access multiple database systems as though there were a single infor­

mation source. The ZVM. supports semantic relativism and distributed abstraction 

modeling, and provides a unique solution to the modeling problem. 

The design of a multidatabase system based on the ZVM creates the Zeus 

View System {ZVS). We have developed a framework-based design method to deal 

with the system design problem through large-scale reuse. Our idea is based on 

the fact that the system can be developed via reusing frameworks oî plug-compatible 

software components. The high-level design of frameworks is portable across hard­

ware platforms. Therefore, we can reuse the system design when the system needs to 

be developed for a new computing environment or when new DBMSs are added to 

the multidatabase community. Now that we have described the conceptual structure 

of our solution, we can define the scope of our research that turns our concept into a 

working multidatabase system. 

1.2 Scope 

We have identified the following components as integral to the development of the 

Zeus View System: a theoretical foundation, a design method, and a distributed 

object infrastructure. The theoretical foundation provides a rigorous basis for the 

ZVM. We have developed an object model, a mapping methodology", and 

an integration model to formalize the ZVM. We have combined object-oriented 

^We will explain what a mapping methodology is in Section 3.4.2. 
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techniques and software engineering concepts to create a design method based on 

the use of frameworks. To provide a distributed object infrastructure, we integrate 

the CORBA specification[122] into our system design and development. A complete 

high-level design specification of our multidatabase system written in CORBA IDL 

has been included in Appendix B. We have also defined a computation model 

based on the mappings between views and CORBA objects. Our research has been 

focused on the above components. Although we have not started to deal with the 

issues related to the multidatabase transaction management, the completion of the 

ZVS will provide a test bed for us to explore those issues in a more pragmatic 

manner. The implementation of the ZVS is beyond the scope of this dissertation. 

The perspectives of our future work and research directions are described in Chapter 

5. 

1.3 Contributions 

The major contribution of this research lies in the creative concept and design of 

a new view mechanism and a view system that has a broad applicability to future 

integration and interoperation technologies. Our experience with Project Zeus has 

also addressed a number of key issues and allowed us to propose solutions that have 

not been extensively discussed or explored in other existing work. 

Our direction in multidatabase system design is motivated by the micro-kernel 

architecture[50] in operating system design, and the Open 00DB[111] in object-

oriented DBMS design. The common goal of these approaches is to achieve an ex­

tensible, scalable, portable, and interoperable design. In Project Zeus, the issues are 

even more complicated due to the increasing scale, heterogeneity, distribution, and 
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cooperation of the participating systems and surrounding computing environment. 

Our solution to these issues results in another important aspect of our contribution 

reflected in a complete system development method that has the attributes not 

found in existing multidatabase systems; i.e., a rigorous formal foundation, strong 

structuring concepts, extensibility, transparent and high-level reusability of system 

components, portability over full range of machine architectures, support for scala­

bility, support for dynamic configuration, enablers for transparent distribution, and 

conformance with Open System standards. The system development method is based 

on the application of an object-oriented and framework-based design to the develop­

ment of large-scale distributed systems. We need such a system development method 

in order to make it possible for the ZVS to be implementable, maintainable, and 

useful in a global architecture. 

Up to this point, not only have we provided a unique solution to multidatabase 

issues and multidatabase system development, we have also established a solid foun­

dation that will provide an open framework for composing, coordinating and con­

figuring distributed applications which in turn support transparent sharing of global 

resources. 
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CHAPTER 2. RELATED RESEARCH 

Multidatabase research has been quite intensive and extensive in recent years. 

A taxonomy of multidatabase systems is described in [21]. A collection of articles 

on recent advances in multidatabase research can be found in [57]. Related work in 

multidatabase research can be classified into a number of categories: fundamental 

research, database interoperability, object-relational interface, multidatabase system 

development, and standardization activities. We will give a survey for each of these 

categories in this chapter. Before we start, it is worthwhile to point out that different 

approaches may result in different degrees of integration or different levels of inter­

operation. Integration and interoperation technologies are required by a spectrum 

of applications and there is no single approach or system that can be applied to all 

applications. However, the experience and the technical merits or flaws in the various 

approaches of exisiting multidatabase research have given us valuable guidance in the 

development of our solution. 

2.1 Fundamental Research 

The fundamental research in multidatabase includes modeling issues, mapping 

methodologies, and semantic issues. The modeling issues center around the cre­

ation of a common data model for modeling the integration and interoperation of 
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multiple database systems. Salter, et al., discussed the suitability of data models 

as canonical models for federated databases [92]. The representation ability of a 

model was discussed based on expressiveness and semantic relativism. Barsalou and 

Gangopadhyay proposed an extensible metalevel system in which the syntax and the 

semantics of data models, schémas, and databases can be uniformally represented 

[II]. They named this system M(DM). It is also referred to as an open framework 

for interoperation of multimodel multidatabase systems. 

The mapping methodologies refer to the mappings of participating database 

systems to the semantics of client applications as well as the syntax and semantics 

of the constructs for describing such mappings. Konstantas described the mapping 

methodology in the context of type relations, type matching, and object mapping 

[69]. Su, et al., proposed an object-oriented rule-based approach to provide a common 

data model and a mechanism for schema translation [105] that maps a local database 

schema to a global schema. 

Semantic issues in multidatabase research were addressed in [96]. The integra­

tion model of a multidatabase system must be able to describe the semantics of data, 

metadata, integration, DBMSs, and applications. Semantic interoperability should 

be achievable in the integration model. Schema translation and schema integration 

nuist be semantic-preserving. Semantic relationships represents multidatabase in-

terdependencies. The semantic relationships of both data and behavior need to be 

identified. Semantic heterogeneity refers to the disagreement about the meaning, 

interpretation, or intended use of the same or related data. Semantic heterogeneity 

must be identified and resolved among participating DBMSs. A multidatabase sys­

tem also needs to support semantic reconciliation and semantic relativism. Semantic 
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reconciliation resolves semantic heterogeneity and identifies semantic discrepancy. 

In our research, we also chose to use a common data model in order to reduce 

the number of mappings of the data models between DBMSs and applications. Our 

data model is based on an extensible object model. The object model is adjustable to 

different application domains. Therefore, we can use the same model with compatible 

extensions to describe the view mechanism as well as the design of the view system. 

This simplifies the modeling issues. Although it is hard to make a direct comparison 

between different data models proposed for multidatabase systems, we see our data 

model as a good choice for its uniformity and extensibility. Our view of the mapping 

methodologies follows that of Konstantas [69]. Our approach is based on a layered 

architecture that allows us to use the layering technique to encapsulate the issues 

related to the shipment of data in the lower layers of the layered architecture. The 

upper layers of the layered architecture can then focus on the mappings to applica­

tion semantics transparent to the heterogeneity and distribution of the computing 

environment. This is how we are able to support distributed abstraction modeling 

and separate the semantics of a global request from the mechanism that actually 

executes the request. Semantic issues are being explored in our research. We plan 

to deal with semantic issues in the view constructs which are described in Section 

3.4. The use of the layering technique to solve the modeling problem allows us to 

achieve different degrees of integration and different levels of interoperation. Other 

approaches have not been able to provide this kind of flexibility [11, 96, 105]. 
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2.2 Database Interoperability 

A shortcut to achieving information sharing is database interoperability. Database 

Interoperability is referred to as the capability of DBMSs to retrieve data and request 

services by invoking functions from each other. Recent architectures and approaches 

for database interoperability have been described in [124]. There are three basic 

approaches for accomplishing the connectivity required by database interoperabil­

ity: database gateways, database drivers, and connectivity software that routes SQL. 

These three basic approaches spawn five major architectures for database interoper­

ability. In general, the solutions to database interoperability arc useful to a stable 

organizational information system that does not expect drastic change in application 

reciuirements and information structures. For multidatabase applications in a global 

architecture, database interoperability is not as useful because the number of partic­

ipating DBMSs is very large and it is not feasible to provide a proprietary interface 

for each pair of DBMSs. We will briefly describe these architectures and then explain 

why they do not provide the solution to the problems we are solving. 

PC Front Ends With Database APIs. This architecture tries to solve 

the problem of allowing applications to access a variety of back-end data sources 

through a uniform interface, which in this case refers to an application program in­

terface (API). Examples include Microsoft's Open Database Connectivity, Borland's 

Open Database API, and the SQL Access Group's (SAG's) Call Level Interface. 

However, these APIs lack the support for the setup and management of communica­

tion sessions, coordination of operations in multiple DBMSs, and query optimizations 

which are all required in handling a global request in a multidatabase system. 
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Relational DBMSs With Conventional Gateways. The role of con­

ventional gateways for RDBMSs is to translate information and structure of foreign 

data sources into the host database's format. This is functionally similar to database 

drivers. The conventional gateways provide the resources needed for distributed 

database access in the server DBMS, and a stable and transparent architecture for 

database interoperability. Examples of conventional gateways come from Ingres, In­

formix, Oracle, etc. Adding conventional gateways to RDBMSs does not provide a 

total solution to multidatabase issues since it only supports RDBMSs. 

Open Gateways. Open gateways provide the functions recjuired to trans­

parently connect clients to remote data sources and to route requests for operations 

on remote databases to the proper target. Users of open gateways can implement 

their database interoperability software independently of their DBMS software. Most 

open gateways also provide APIs for building client applications and new gateways. 

Examples of open gateways include the products from Sybase, Information Builder, 

and Software Publishing Corp. Although the name of this architecture implies an 

open architecture, the implementations are biased toward existing RDBMSs. The 

concept of open gateways is similar to the choice of a common data model in a 

multidatabase system. 

Database Connectivity Software. Database connectivity softwares take 

SQL statements from client applications and deliver them via the proper networking 

protocol to the target database. Performing this function often requires transfor­

mations of the transport protocol. Database connectivity softwares only address 

networking between applications and databases which is part of a total database 
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interoperability problem. Examples include Database Gateway from Micro Decision-

ware, SequeLink from Techgnosis International Inc., and DAM from Apple Computer 

Inc. Data connectivity softwares do not provide a total solution to multidatabase is­

sues because only RDBMSs are supported. 

Database Encapsulation Software. Database encapsulation softwares 

encapsulate target DBMSs by objects that represent their functions and access meth­

ods. Users are shielded from the differences in types of databases. The database en­

capsulation approach comes closest to supporting all of the requirements of database 

interoperability. Examples of database encapsulation software include the products 

from Constellation and OpenBooks Inc. Database encapsulation softwares introduce 

the notion of database encapsulation. However, database encapsulation software has 

not been able to further encapsulate the heterogeneity and distribution of the com­

puting environment. This hinders the possibility of using database encapsulation 

software in a global multidatabase environment. 

2.3 Object-Relational Interface 

There are two major aspects of an object-relational interface. First of all, an 

object-relational interface can be viewed as an interface to bridge Relational DBMSs 

(RDBMSs) and Object DBMSs (ODBMSs) such that users of one DBMS are allowed 

to access the data stored in either format. Secondly, an object-relational interface can 

be viewed as a way to introduce object-oriented technologies to the applications as­

sociated with RDBMSs. Existing attempts to developing object-relational interfaces 

have both or either one of the above two aspects. We give a review of a number of 
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object-relational interfaces to illustrate the work in this area. In general, an object-

relational interface is cjuite useful in the real world since many existing DBMSs are 

either RDBMSs or ODBMSs and many applications do require an interface between 

RDBMSs and ODBMSs. However, applying an object-relational interface to a more 

global architecture is not feasible because the interface has to be specialized for 

each pair of DBMSs based on the implementation-dependent features of each DBMS. 

When the number of DBMSs is large, this task would be unwieldy. 

OR Interface. The OR Interface is a prototype developed at Iowa State 

University [90] in an environment where both a RDBMS and an ODBMS are used and 

users of one DBMS are allowed to access the data stored in either format. UNIX-based 

workstations and the AS/400 were chosen as the prototyping platforms. Although a 

more homogeneous environment could have been used or even having two different 

DBMSs on the same platform, that may however impede the effort of exploring some 

interesting heterogeneity and interoperability issues. UNIX-based platforms were 

chosen because of its widespread usage for desktop computing. The AS/400 was 

chosen because of its existence in large numbers in the commercial data processing 

environment. In the OR Interface system, a request for data may be initiated by an 

interactive query language, an application program using an embedded query, or an 

object programming language requesting a persistent object. Users of one DBMS are 

shielded from knowing the details of another DBMS while requesting data from either 

DBMS. The experience with the OR Interface has provided us with the details on how 

to create a non-intrusive interface^ with a DBMS which is required in a multidalabaso 

^ A non-intrusive interface allows a DBMS to retain its autonomy; e.g. the control 
of local resources or the right to stop to cooperate in the interface. 
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system. However, the OR Interface does not provide a complete solution to our 

problems because it is only useful for bridging ODBMSs with RDBMSs. 

Object-Oriented Relational Database. Premeriani, et al., proposed 

an approach to combine an RDBMS with an object-oriented programming language 

to generate an ODBMS [87]. The basic idea of their approach is to buffer the database 

with an object-oriented layer that keeps relevant data in memory. Locking and up­

date functions are built into the object-oriented layer. The object-oriented layer hides 

the database from applications. Application programmers can use object-oriented 

languages to create, save and restore persistent objects without knowing any opera­

tions provided by the target database. The notion of encapsulating databases via an 

object-oriented layer is useful and relevant to our approach. We have extended this 

notion to a layered architecture that provides more than one levels of encapsulation. 

2.4 Multidatabase System Development 

The focus of the research in multidatabase system development is to develop 

multidatabase systems that allow users to transparently access heterogeneous, au­

tonomous and distributed database systems. There are two categories of issues re­

lated to the development of multidatabase systems. First of all, the functionality of 

multidatabase systems must be well-defined. For example, suppose a multidatabase 

system provides a uniform interface for applications. What is included in the in­

terface and how the interface is tied to other components of the system need to be 

clearly specified. Secondly, the multidatabase system must be made feasible under 

all pragmatic considerations. For example, a multidatabase system must be extensi­
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ble, scalable, portable, and interoperable with other systems. How the performance 

can be optimized based on the configuration and application requirements should be 

addressed. Although the same functionality can be achieved by different designs and 

implementations, failure to accommodate pragmatic considerations will render the 

multidatabase system infeasible or even useless. In the remainder of this section, we 

review existing approaches to multidatabase system development. Under each ap­

proach, we describe various prototypes and projects that are based on the approach. 

We also explain why the problems we addressed in Chapter 1 cannot be solved by 

these approaches. 

2.4.1 Global Schema Approach 

This approach creates a global schema from local external schémas. The global 

system supports a common data model and a global data language. Multidatabase 

users view the global schema as the definition of a single database. The heterogeneity 

of local DBMSs is hidden from users. The global schema approach requires a total 

integration at the schema level. Maintaining a global schema becomes unwieldy when 

the addition and update of participating DBMSs are frequent. The problem is even 

worse when we apply this approach to a global architecture. Moreover, different 

applications require different degrees of integration. Enforcing a total integration on 

all applications is too restrictive. 

• Multibase. Multibase is a software system for supporting integrated access 

to pre-existing, distributed heterogeneous databases [40]. The system provides 

users with a unified global schema and a global high-level query language. 

Local database schémas are translated to local schémas modeled by the global 
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data model. The global schema is created from a set of local schémas and an 

integration schema. The integration schema maintains the mappings between 

local schémas and the global schema. The global schema allows users to pose 

queries against what appears to be a homogeneous and integrated database. 

The major weakness of Multibase is that even for the database whose data will 

not be used at all by any application, its database schema still needs to be 

integrated into the unified global schema. 

• DATAPLEX. DATAPLEX is a heterogeneous distributed DBMS developed at 

General Motors Research Laboratories [34]. The key concept in DATAPLEX is 

to use the relational model as a common data model and the Structured Query 

Language (SQL) as a global ciuery language. The architecture of DATAPLEX 

is extensible to any DBMS and file system. The relational model is insufficient 

for modeling complex objects that appear in ODBMSs. Using the relational 

model as a common data model fails to address the modeling problem in a 

multidatabase environment. 

2.4.2 Multidatabase Language Approach 

This approach puts most of the integration responsibility on users. Global users 

are aware of multiple data sources. Instead of providing a global schema, a common 

name space is defined across all participating DBMSs. Users use the global mul­

tidatabase language to define the sources of data, and how the data is integrated, 

transferred and presented. An example of the multidatabase language approach is 

SWIFT [108]. The SWIFT system was developed for cooperative fund transfer ap­

plications. A common communications architecture and a set of financial transaction 
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messages are used as a common basis for interactions among participating partners 

in the SWIFT system. The multidatabase language approach puts too much respon­

sibility on users. One of the problems we are solving is how to make multidatabase 

users transparent to the heterogeneity and distribution of the computing environ­

ment and DBMSs. The multidatabase language approach fails to provide this kind 

of transparency. 

2.4.3 Federated Database Approach 

In a federated database, each local DBMS maintains a partial global schema that 

contains only the global information used by local users. There is no single global 

schema. The local site needs to work closely with a set of inter-related sites to set 

up the partial global schema. The set of inter-related sites forms a federation. A 

federation consists of several sites and a single federal dictionary. Each local site in 

the federation controls its interactions with other components by means of an export 

schema and an import schema. An extensive definition of federated databases can 

be found in [54]. A survey of existing federated database systems has appeared in 

[98]. Federated databases have tried to avoid the shortcomings of the global schema 

approach and the multidatabase language approach. The notions of an export schema 

and an import schema have proven to be quite useful in our approach. However, 

existing work in federated database has not addressed how the federations interact 

with one another to achieve a more global information sharing. 
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2.4.4 Object-Oriented Approach 

In recent years, object-oriented approaches to multidatabase system development 

have started to emerge to utilize the object-oriented modeling power and object-

oriented techniques [24]. These approaches are object-oriented in the sense that 

object-oriented models, properties, and techniques are used to assist in the develop­

ment of multidatabase systems at different levels. For example, the notion of objects 

can be used to encapsulate the functionality of DBMSs through which multiple lev­

els of abstraction can be achieved and the underlying heterogeneity can be hidden 

from users. Object-oriented techniques may also alfect the architecture of a multi-

database system. For example, a multidatabase system may rely on a distributed 

object infrastructure for object transfer and remote method invocation. A survey of 

multidatabase research and systems using object-oriented approaches has appeared 

in [24]. In general, object-oriented approaches have many advantages over other aj)-

proaches. Although it is hard to give a direct comparison between our approach and 

other object-oriented approaches, it is clear that none of existing approaches have 

addressed the system design problem. To deploy a multidatabase system in a global 

architecture, the system design must be extensible, portable, scalable, and main­

tainable. We address this problem by providing a framework-based design approach 

that applies object-oriented techniques to achieve code/design reuse. This is how we 

are able to reduce the complexity of developing a multidatabase system in a global 

architecture. 

• Pegasus. The Pegasus Heterogeneous Multidatabase System [4] has a com­

mon data model and a global data language. Each local DBMS exports a 

local schema which is then mapped to an import schema in the multidatabase 
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system. The integrated schema is composed of import schémas and other in­

tegrated schémas. Pegasus does not support encapsulation although it does 

support an object model. In Pegasus, an object has a type and can be operated 

on by a set of functions defined separately from the object. Recent advances in 

Pegasus adopted the notion of abstract view objects to facilitate the integra­

tion of multiple object DBMSs [32]. A set-theoretic foundation is provided for 

dealing with object identification, object integration and function inheritance 

in the context of abstract view objects. In contrast to Pegasus' approach, our 

view mechanism deals with integration and interoperation semantics through 

type matching, type relations and object mapping. This allows us to provide 

a much simpler solution to the modeling problem by using a single construct; 

i.e., Zeus views, for modeling integration and interoperation semantics. Our 

view mechanism is further integrated with CORBA [122] through a two-step 

mapping that attaches runtime semantics to Zeus views. 

• ViewSystem. VievvSystem is developed at GMD-IPSI as an object-oriented 

programming environment to provide uniform access to heterogeneous infor­

mation bases such as databases and file systems [60]. ViewSystem provides 

an object-oriented query language and a method language. In ViewSystem, 

information systems are modeled by the VODAK data model. The mappings 

between schémas of participating information systems and VODAK are han­

dled by schema transformations. Integration operators and class constructors 

are provided to facilitate both data and semantic integration. ViewSystem has 

applied object-oriented techniques to modeling issues. Although ViewSystem 

has the potential of being extended to work in a global architecture since the 
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participating information systems are not restricted to DBMSs, the system de­

sign problem was not addressed. 

.5 Miscellany 

• Superdatabase. The notion of siiperdatabases [88] was developed at Columbia 

University for investigating transaction processing in multidatabase environ­

ments. A superdatabase is intended to glue component transaction processing 

systems in a hierarchy. Participating database systems export external schémas 

to describe local data in a global data model. A superdatabase is composed of 

local external schémas and other related superdatabases. The hierarchy of the 

composition of superdatabases matches the way the multidatabase transactions 

are integrated and structured. A declarative interface is provided to access the 

composed superdatabase. This approach only addresses the problem of multi-

database transaction management. It does not provide solutions to modeling 

and system design problems. 

• Carnot. Carnot is a system for integrating information resources using a large 

knowledge base [37]. In Carnot, the global schema approach was adopted. How­

ever, the implementation of Carnot has avoided shortingcomings of the global 

schema approach in three ways. First of all, the glol)al schema does not need 

to be re-generated each time a new resource is added. This is done through 

the use of the Cyc knowledge base. Secondly, in addition to structural descrip­

tions, Carnot records schema knowledge, resource knowledge, and organization 

knowledge to aid schema integration and resolve semantic differences. Thirdly, 

Carnot uses a set of articulation axioms to handle the mappings between in for­
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mation resources and the global schema. Adopting the global schema approach 

eliminates the possibility of using Carnot in a more global architecture. 

2.5 Standardization Activities 

It should be noted that standardization activities also contribute to the advances 

of integration and interoperation technologies. For example, Remote Database Access 

(RDA) is a standard drafted by the International Organization for Standardization 

(ISO) [125]. RDA uses the Open Systems Interconnection services as the basis for 

RDA services. With the implementation of this standard, users will have a single, 

well-defined interface for heterogeneous environments. SQL Access is another .stan­

dard drafted by the ISO [126]. Many vendors have started to implement SQL servers 

which conform to this standard to increase database interoperability. The standard­

ization of object DBMSs and object query languages will also affect the multidatabase 

research. We will elaborate more on this in Chapter 5 and Appendix A. The stan­

dardization of distributed object services and architectures has significant impact 

on those multidatabase systems built on object-oriented approaches. Basically, the 

transport of objects and remote method invocation will be much easier and reliable 

as long as the involved parties are compliant with the standards for distributed ob­

ject services and architectures. The components of a multidatabase system and its 

associated environment are too extensive to be covered by any existing standards. 

It is also true that standards are not always acceptable by the majority. However, 

the standards do provide convenience when it is widely accepted and can be used 

in part of the multidatabase system. In Chapters 3 and 4, we will explain how we 

accommodate recent standard specifications in our solution. 
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In this chapter, we introduce the foundation of our approach to integration and 

interoperation technologies, the Zeus View Mechanism {ZVM). We use a single 

construct, the Zeus view, as our basic modeling unit. The Zeus view does not have 

a stored state nor does it provide any global resources. It is only used to describe 

available services and resources such that the information can be recalled by the 

ZVS to  coordina te  the  shar ing  of  serv ices  and  resources .  Di f ferent  types  of  Zeus  

views along with the components of the surrounding computing environment form 

a layered architecture that provides multiple levels of abstraction and encapsulation 

for the ZVM.. For the remainder of this chapter we start with an introduction of the 

view concept. Then we describe how the Zeus views lead to the layered architecture. 

Fina l ly ,  we  provide  a  formal  descr ip t ion  for  the  theore t ica l  foundat ion  of  the  ZVM..  

This theoretical foundation is composed of an extensible object model, a mapping 

methodology, an integration model, and part of a computation model. 

3.1 Evolution of the View Concept 

Due to the diversity of existing view concepts, it is hard to make a precise 

comparison between the various views used in the same or different areas of research. 

However, we would like to explain the idea of how view concepts have been used in 
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different application domains and why we chose views as the basis of the ZVS.  We 

start with a review of conventional and recent use of views to give a general notion 

of views, although not all uses of views are directly related our research. 

Conventional Views. The conventional notion of views is often used 

to describe derived data in order to achieve better protection and flexible access 

to shared information. For example, relational views can be represented by non­

procedural queries to describe derived data. Views have also been used in software 

engineering. For example, views in [48] were used to let multiple tools share a common 

object base. 

View Objects. In recent years, the view concept has been extended to 

utilize object-oriented techniques. This extension has been applied to a variety of ap­

plication domains. For example, the notion of view objects was introduced in [113] to 

integrate the abstraction capabilities of programming languages and the conventional 

view concept of database systems. In [87], an Object-Oriented Relational DBMS was 

implemented and applied to a spectrum of applications. The view concept in [99] is 

used to create an architectural building block for object-based software environments. 

In [12], object-based views are used to update relational databases. The issues of view 

update semantics are discussed and investigated in [33, 94]. Numerous approaches 

have also emerged to encapsulate information and software systems by views. For 

example, abstraction and view mapping capabilities are proposed in [53] to support 

federation of heterogeneous software and databases. A sophisticated view mechanism 

is introduced in [1] to help restructure data or integrate databases. Object-oriented 

views are used to integrate heterogeneous information systems in [38, 60]. 
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Views in Project Zeus. The word, view, means what one can see from 

where one is. We introduced the view concept into our approach because views pos­

sess a number of properties. First of all, views are combinative which implies that wc 

can use views as the basic unit for integration. Second, views are flexible. Different 

views created from the same set of data may be tailored to different applications. The 

notion of views is the most natural way to implement semantic relativism [22]. Third, 

views are declarative. We can use views to hide heterogeneity and implementation 

details. The Zeus view has a number of characteristics that separates our approach 

from previous research. First of all, the Zeus view has broad scope. It is capable 

of modeling a wide range of application domains, and applications may span across 

organiza t iona l  and  adminis t ra t ive  boundar ies .  Second,  the  in te rac t ion  be tween Zet i s  

views is characterized by specification level interoperability [115]. The composition 

of Zeus views is easy and flexible due to the separation of specifications and imple­

mentations. Third, the Zeus views carry meta information [76] and we model the 

Zeus views by a single basic structure. The incorporation of the metadata in the 

Zeus view improves global information search, security control and transaction man­

agement in the ZVS. Modeling the Zeus view via a single basic structure facilitates 

the integration of views. 

3.2 Layered Architecture 

The ZVM has a layered architecture shown in Figure 3.1. Layering is a widely 

accepted structuring technique which decomposes one problem into a number of more 

manageable subproblems. The concealment of the functionality of lower layers from 

upper layers forms the basis of multiple levels of encapsulation and abstraction. The 
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Figure 3.1: Wide-area abstraction and layered architecture. 

layered architecture of the ZVS has six layers; i.e., layer 1 (Distributed Computing 

Environment), layer 2 (DBMSs), layer 3 (Local Interfaces), layer 4 (Base Views), 

layer 5 (Views), and layer 6 (Common Access Interface). The major role played by 

the layered architecture is to support semantic relativism and distributed abstraction 

modeling which are solutions to the modeling problem. The key to the creation of 

the layered architecture is centered around the notions of wide-area distributed ab­

straction and multi-level encapsulation and abstraction. We explain these important 

concepts next. 

Wide-Area Distributed Abstraction. Figure 3.1 gives an example that 

illustrates the complexity of the issues in Project Zeus. We assume that the need 

for integration arises within and between each campus computing environment. In 

other words, the integration has a more global context. In Figure 3.1, View-3 is con­

structed from View-1 and View-2. Both user-A and user-B access global information 

through View-3. First of all, View-1 and View-2 must carry enough information to 

access data from the local DBMSs. View-3 will guide the multidatabase system to 

perform the integration of data from View-1 and View-2. The integration must reflect 
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the semantics of real-world applications. Based on the request, data objects will be 

moved between hosts. Migrating an object from one host to another means moving 

both data and operations of the object. The remote host may have the same data 

representation and object types. If not, object transformations and type translations 

should be provided to instantiate a corresponding type in the local runtime system. 

The semantics of the object should be preserved after the migration. Furthermore, 

the multidatabase system may need some sort of intelligence to optimize the perfor­

mance. For example, the data from View-1 might be directly made available to user-A 

without network communication. The goal of the multidatabase system is to make 

all these issues transparent to applications. We refer to this kind of transparency as 

wide-area distributed abstraction. 

Multi-level Encapsulation and Abstraction. Layering embedded in 

the layered architecture results in multiple levels of abstraction and encapsulation. In 

the first level of encapsulation, the interaction between the ZVS and the local com­

puting environment is defined in a portable interface. In our case, this interface is 

defined in CORBA/IDL [122]. In Chapter 4, we will elaborate on what CORBA/IDL 

is  and  how i t  i s  used  in  Pro jec t  Zeus .  In  the  second leve l  of  encapsula t ion ,  the  ZVS 

uses the schema translation to map local database schema to local interfaces which 

are modeled by an extensible object model (EOM)^. The mappings between these 

local interfaces and local schémas enable the ZVS to invoke local access routines on 

behalf of a global request. The heterogeneity of participating DBMSs and transport 

mechanisms of remote data access are hidden from upper layers. In the third level of 

HVe will elaborate on the EOM in Section 3.4.1. 
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encapsulation, base views are derived from local interfaces to describe the data that 

the local DBMS is willing to import or export. The import/export mechanisms are 

hidden from the upper layers. In the fourth level of encapsulation, base views and 

existing views can be used as building blocks for constructing new views that are 

tailored to the needs of different applications. The view construct hides the integra­

tion and composition details from its upper layer. In the fifth level of encapsulation, 

the Common Access Interface (CAI) determines how views are seen from the out­

side world. The design of the CAI shields applications from needing to know the 

internal structures of views and makes all participating DBMSs appear as a single 

source of services and resources. The Zeus view constructs; i.e., Local Interface, Base 

View, and View, sitting in layers 3, 4, and 5, respectively, provide multiple levels of 

abstraction. The notions of multi-level encapsulation and abstraction can also be 

summarized as a mapping between a set of information sources and an application 

Summary. Figure 3.2 summarizes the role of the layered architecture in 

our research. We assume that the multidatabase system will be used in a global mul-

tidatabase community hosted by a distributed computing environment. In Figure 

3.2, we use different shapes to indicate that participating DBMSs may have different 

external interfaces and different internal representations of data. Similarly, multi-

database applications have different data requirements and different interpretations 

of received data. It is infeasible to provide an interface for each pair of a DBMS 

and an application. We want to use a single software layer to protect applications 

from the heterogeneity and distribution of DBMSs. All the participating DBMSs 

should appear as though there is only a single DBMS. We use the layering technique 
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Figure 3.2: The view system and the view mechanism. 

to deal with the complexity of this problem. The layered architecture is the core 

of the ZVM. The lower layers of the layered architecture hide the heterogeneity 

and distribution of DBMSs and other distributed components from upper layers of 

the layered architecture. This provides a basis for distributed abstraction modeling. 

Therefore, upper layers of the layered architecture can concentrate on modeling ap­

plication requirements and provide different views of a large amount of shared data. 

This is how semantic relativism is supported. Our multidatabase system implements 

the  ZVM. 

3.2.1 A Comparison of Terms 

Figure 3.3 shows how some commonly used terms in multidatabase research are 

compared to the terms used in the ANSI/ISO 3-schema architecture. The ANSI/ISO 

3-schema architecture separates the conceptual schema of an application from its 

external schema and physical schema. This separation enhances the design portabil­

ity of an application across different computing environments since the application 
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Figure 3.3: A comparison of terms. 

can change its design by changing its conceptual schema. The external schema and 

physical schema of the application in different computing environments will be au­

tomatically adjusted upon the occurrence of changes in the associated conceptual 

schema. In Figure 3.3, all the constructs above the dotted line are rejjresented by a 

homogeneous global data model. The heterogeneity is confined to the space below 

the dotted line. The local schema is mapped to the component schema or local inter­

face through a semantic-preserving schema translation. The export schema is derived 

from the component schema and describes the data that the local DBMS is willing 

to share with a limited set of clients. An import schema describes how the external 

data can be imported into the local DBMS. In the 2VS, base views correspond to 

export schémas and import schémas. The ZVS implements both partial integration 

and total integration. We refer to all other constructed views as Zeus views which 

correspond to the federated schema and the external schema. 
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3.3 A Running Example 

We use a running example in this thesis to illustrate how the 2VS can be used 

for multidatabase integration and interoperation. The descriptions of the real-world 

entities and modeling constructs in this example are informal. What we would like 

to motivate is how the system architecture of the 2VS achieves the application 

requirements. The databases used in our example are defined in Figure 3.4. 

Environment and Database Schémas. We assume that an airline main­

tains a relational database for the reservation and flight information. The airline 

also offers a MileageAward program that gives customers free flights based on their 

accumulated flight mileage. The MileageAward program maintains its information 

in an object database. The airline operates a world-wide distributed computing 

environment. The MileageAward program database has two class definitions; i.e., 

MileageAwardMember and Flight. Flight is an abstract class and has no instances. 

The reservation information is kept in a reservation relation. The flight information 

is kept in a flight-info relation. Both relations are hosted by a relational DBMS. 

Application Semantics. There are three applications that require in­

tegrated access to both relational and object databases in our example. In appli­

cation# 1, the MileageAward program prints out a mileage balance report for each 

member every year. This application will need the flight information from the rela­

tional database to compute the total mileage for each member in the object database. 

In application#2, the members of the MileageAward program use the member card 

to update their flight record whenever they check in for a flight. The application 
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class MilcageAwardMember 
type luple(name:strmg, 

address;tuple(street:string,city:string), 
card#:integer, 

nighls;set(Flight)) 

class Flight 
type tuple(flightNo:string, 

datc:string) 

This is the definition of the object database that stores the 

Mileage Award program information. Notice that the 

information about the mileage of a flight is not available. 

This object database is hosted by an object DBMS. 

relation reservation <name:string, 
flight#:string, 

relation flight-info 

date.-string, 
confinnation#:integer> 

<flight#:string, k 
fTom:string, 
to:string, 

mileage:integer> 

This is the definition of the relational database that stores 

the reservation and flight information. The above two 

relations are hosted by a relationai DBMS. 

Figure 3.4: A running example. 

requires the flight information to be sent from the relational database to the object 

database. In application^3, the airline provides a graphical user interface and a voice 

response service. The airline customers can confirm their reservations, check their 

flight records, or query the flight information via a phone call. The operators can 

use the graphical user interface to answer customer queries. Notice that we allow 

applications to access the ZVS at different levels. For example, application#3 can 

access the DBMSs through the CAI, the local interface, or the DBMSs. 

3.4 Foundation 

In this section, we provide a formal description for the theoretical foundation of 

the ZVM.. We start with the definition of an extensible object model (EOM). Based 

on the EOM, we describe our view of the real-world entities within a multidatabase 

community. The mappings we discussed in Chapters 1 and 3 are detailed in our 

description of the mapping methodology. This issue has been listed as one of the 
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key issues in multidatabase research [104]. The integration model of the ZVM 

provides the details of the integration mechanism that supports the integration of 

the view constructs. Finally, we use the OR model as an example to illustrate how 

the computation model of an actual multidatabase environment can be described in 

te rms of  the  theore t ica l  foundat ion  of  the  ZVM. 

3.4.1 Object Model 

We define an extensible object model (EOM) to provide a common framework 

for modeling real-world and conceptual entities in a variety of application domains. 

The idea of using a common data model for integration also appeared in [11, 105]. 

We adopt the terminology used in [123] to present the EOM. The EOM, as depicted 

in Figure 3.5, is composed of a core object model and a set of components. A 

component is a compatible extension of the core object model. A profile is a set 

of selected components. A profile along with the core object model provide the 

modeling facility for a particular application domain. The EOM is extensible in the 

sense that components can be added and then grouped by profiles to tailor to the 

requirements of existing and future application domains. The proposed core object 

model is influenced by on-going standardization efforts [45,122,123] and research [85]. 

We expect that the compliance with emerging standards will enhance the portability 

and interoperability of our system. 

Object. An object can model any real-world entity or conceptual entity. 

Each object has a unique identity which is immutable and persists as long as the 

object exists. An object has its state and behavior. The state of an object captures 
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Figure 3.5: The extensible object model (EOM). 

the information carried by the object. The behavioral semantics of an object is 

implemented by operations to change the state of the object. For example, a data 

object in a database might be used to model the employees of a company. The 

name of an employee is part of the state of the employee object. There might be an 

operation defined to compute the average salary for all the employees in the company. 

Thus an object p is defined as a triple: p = {oid,a,A). In this definition, oid is a 

unique identifier, cr is the state of p, and A is a set of operations. We have introduced 

the general notions of an object identifier, the state of an object, and the behavioral 

semantics of an object. Our intent is to provide definitions at an abstract level that 

suffice in the context of our discussion. The exact meaning of the state and set of 

operations will be given by each application domain. 

Type. Objects are instances of types. A type has a unique and immutable 

identity, an interface and a set of instances^. The definition of the interface is also 

•^The set of instances of a type is also called the extension of the type. 
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referred to as the type specification which defines the structures and beliavior of the 

type. A type, r, is defined as a triple: r = In this definition, tid is a 

unique identifier, Q is the interface of r, and 0 is the extension of r. The equivalence 

of the types of two objects is determined by the equivalence of the identifiers of the 

two types. 

Class. The implementations of an interface of a type are separated from 

the specification of the type's interface. The interface of a type may have several 

different implementations. The combination of the interface of a type and one of its 

implementations defines a class. A class ç is defined as a triple: ç = 0./). 

In this definition, c id  is a unique identifier, uij is one of the implementations for the 

interface of the associated type, and is the set of objects created via s- Suppose 

0  is  the  extens ion  of  the  type  T  which  i s  assoc ia ted  wi th  s ,  Ç  0  for  a l l  i .  

Non-object Types. Instances of non-object types are the atomic values 

like numbers, characters, strings, and so on. The set of non-object types is differ­

ent in different application domains and can be specified in profiles. For example, 

Binary Large OBjects (BLOBs) can be chosen as a non-object type for multimedia 

applications. The set of all non-objects is denoted as 0. Suppose the set of all object 

identifiers is denoted as 11, the set of values that can be manipulated in the core 

object model is denoted as T and T = 0 U 11. 

Type Hierarchy and Inheritance. All types, except non-object types, 

form a type hierarchy. The growth of the type hierarchy is through subtyping. Sub-

typing creates the relationship between supertypes and subtypes. Inheritance is a 
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mechanism for code reuse. The specification of subtypes can be inherited from su­

pertypes. 

Type System and Object System. We define a type system as a group 

of types which model a specific application domain. Suppose the set of all types ex­

cept non-object types is denoted as a type system can be denoted as F which 

represents a set of types such that F Ç An object system is the union of all 

extensions associated with each type in F. An object system can also be represented 

by a set, A = {/? | /) = {OIDP,a^A)^T = {tidr, UJ, , p G $,t G F} 

The EOM is extensible in the sense that components can be added and then 

grouped by profiles to tailor to the requirements of existing and future application 

domains. Now, we can use the EOM to describe the real-world entities in a mul­

tidatabase community. Figure 3.6 lists the definitions of databases, DBMSs, multi-

databases and multidatabase systems (MDBs). In Project Zeus, we model a DBMS 

as a database type, VT. A database is modeled as a database object, X>, which is an 

instance of a database type. A multidatabase is a set of database objects that may 

have different database types. We model a multidatabase as a multidatabase object, 

MV, which is an instance of a multidatabase type, MVT. A multidatabase system 

is modeled as a multidatabase type. In Figure 3.7, we show an example multidatabase 

environment that has seven database objects enclosed by circles, three database types 

(DT^, DTg, and DTg), two multidatabase objects (MD^, and MDg), and one mul­

tidatabase type (MDT). The boundaries delineated by solid or dotted lines represent 

the interfaces and the mappings between adjacent modeling constructs. The func-
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Definition 3.1 (Database Object: V )  
A (lat.aha.se i.s modeled as a database object., T>. V in denoted as («/(/•£>, <td, (S)- <>><h iiniqiiely 
ideiitifies T>. (Tp in the state of T?. ô-p defines the operaf ions that ran l»e applied to a-p. a-p is 
modeled l*y an object, system, A-p, and a type system, Fd; i.e., ap - (Ap, Fti). Foi- example, 
if V is a relation in a RDBMS, /\-p would be a set of tuples and Tt> would consist, of the 
t.ype.s of all the at.t.ril)iites defined in t.he relation. O 

Definition 3.2 (Database Type: V T )  
datal»a.se management system (DBMS) is modeled as a. dataliase type. A dataltase ol*jert 

is an instance of a database type. A dataliase type, XT, is denoted as 
iid-pT iinicjnely identifies VT. For examjde, DBMSs like Oracle and OlijectStore, have differ­
ent tid-oT^. Q-vt defines the interface of T?T-. for example, a query language. consists 
of a set of database objects that are instances of TXT. O 

Definition 3.3 (Mnltidatabase Object: M V )  
\ mnltidatabase is modeled as a mnltidatabase oliject, MT>. WD is denoted as a triple, 
{OI(I\4T>,F^MV<T^MV)- <>><IMV uniquely identifies MV. (TMV is the state of V. SMV flefines 
the operations that can be ap|)lied to a-p. (Tuv is modeled Ity an object system, A.v<-p. and 
a type system, F.mp- .A.mî) — | V — («/</%), fru, A%,), DT = (//(/-pT. 6 

'I'-DT Ç AMV'T^T 6 F.MD, |F.vfî)| > 1}. where V is a database oliject, VT is a database 
type. For example, a midtidataiiase object may correspond to a federated database in a 
federated database system. O 

Definition 3.4 (Mnltidatabase Type: M V T )  
\ mnltidataliase system is modeled as a iiiultidatalia.se type. A mnltidatabase oliject is 
an instance of a multidataba.se type. A mnltidatabase type, MVT, is denoted as a triple, 
{ImImvT'^mvt^'^mvt)- f'dMvr uniquely identifies MVT. For examjile, mnltidatabase 
systems like Pegasus and Multiba.se have different s. fî.vfDT defines the interface 
of ^MTT; for example, a global (|ueiy language. <1>.VCDT consists of a set. of mnltidatabase 
objects wliicii is in turn composed of a set component dataliases that may have different 
databa.se types. O 

Figure 3.6; Definitions of databases, DBMSs, multidatabases, and MDBSs. 



www.manaraa.com

42 

database 
applicasions 

MDT 

multidaiabase ^ 
applicaiions ' 

Figure 3.7: An example multidatabase environment. 

tionality of a multidatabase system can be deemed as the creation of a linkage or a 

mapping between a multidatabase type and an extensible set of database types. 

3.4.2 Mapping Methodology 

Between applications and DBMSs, we need a mapping to ensure that the data 

is brought from DBMSs to applications in the right format and applications arc able 

to manipulate the data. Our mapping methodology has three major elements; i.e., 

the structures, the type relations, and the semantics. The mapping of structures 

can translate the modeling constructs from one application domain to another. For 

example, a relation in a relational database may be mapped to a set of objects in 

an object database. The mapping of type relations is complicated. In Figure 3.8, 

type-P is the type of a data object stored in a DBMS and type-R is the type of a 

data object used by an application. We refer to the DBMS as the provider and the 

application as the receiver. We identify three kinds of type relations as example.s 

and we use Figure 3.8 to explain type relations in a Provider-Receiver model. First 

of all, type-P and type-R may be equivalent. In this case, state-P can be moved to 
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Figure 3.8: The Provider-Receiver Model and the Mapping Methodology. 

the receiver site and becomes state-R. Behavior-R is directly applicable to state-R. 

Second, type-P and type-R may match in their behavioral semantics. However, either 

state-P needs to be transformed or behavior-P needs to be translated to ensure an 

exact match. Third, there might be no types in the receiver site that match or are 

equivalent to type-P in the provider site. In this case, the receiver may define a new 

type that matches or is equivalent to type-P. Or the receiver may instantiate a proxy 

object that is able to invoke remote operations on the provider site. In any of these 

examples, there must be a semantic agreement between the provider and the receiver. 

The mapping of semantics is partly captured by type relations. A global request 

along with the resulting type matchings and object mappings determine the mapping 

of semantics. 

The abstraction constructs in the layered architecture should convey enough in­

formation for mapping the structure, behavior, and semantics of data from DBMSs to 

applications. The ZVS must be able to determine whether an abstraction construct 

is capable of producing semantically meaningful data for applications. Figure 3.8 

shows how the type relations, type matchings, and object mappings can be viewed 

as our mapping methodology and fit in the Provider-Receiver Model. Now we can 

explain how the mapping methodology is embedded in the Zeus view constructs. 
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define Locallnlerfacc MileageAward as ( define Locallnterface Reservation as ( 

sCructure {type MileageAwardMeinber:tupIe structure {type Customer:set(RESERVAnON) 
(name;string, type RESERVATION;tuple(name;sliing, 

address;tuple(street;string,city;string), flight#:string,date;string,connrmation#:int«ger) 
card#:integer, 

nights:sel(FIight)) 

type Flight:tuple 

( nightNo:string, date;string ) 

type Flight-Info:sel(FLIGHT-INFO) 

type FLIGHT-INFO:tuplc<flight;slring,from;string, 

to:string.mileage: integer) 

) 
1 

access (type MileageAwardMember <=> 

type MileageAwardMember in ODBMS, 

typcFlight <=> type Flight in ODBMS 

) 

access type RESERVATION <=> 

type reservation in RDBMS, 

type FLIGHT-INFO <=> 

type flight-info in RDBMS 

semantic {flightNo of type Flight <=> semantic ( flight# of type FLIGHT-INFO <=> 

(light# of type FLIGHT-INFO in Reservation 

) 

flightNo of type FLIGHT in MileageAwardMember 

) 

) // End of MileageAward definition ) // End of Reservation definition 

Figure 3.9: Example 3.1. 

Example 3.1. The local interfaces for the databases of our running exam­

ple are listed in Figure 3.8. Each database has a corresponding local interface. Each 

local interface has three major components; i.e., the structure, the access mechanism, 

and the semantics. Notice that although the database definitions appeared in Figure 

3.4 have different syntactic structures for different DBMSs, the corresponding local 

interfaces are all defined using a uniform syntax. In Figure 3.9, we use "<=>" to 

denote the orderly correspondence between the attributes of two types. The details 

of such a correspondence are defined in terms of type relations and object mappings. 

Figure 3.10 gives formal definitions for a view type and a local interface. All 

the  Zeus  view cons t ruc ts  a re  ins tances  of  the  Zeus  view type ,  ZVT.  We use  ZVT 

to group commonalities of the Zeus view constructs and specify a common manage­

ment interface for the Zeus views. A local interface describes a local schema of a 

participating database in the context of a global data model. A request TZ against a 
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local interface CI is translated to a set of local database access routines. A transac­

tion created by the multidatabase system coordinates the execution of these database 

access routines and makes sure that the result matches the semantics of the request. 

Since a request against a local interface might be originally generated by a request 

against a base view or a view, the transaction is created upon the arrivial of the 

original request. Local interfaces hide the heterogeneity and distribution of partic­

ipating DBMSs from the upper layers of the layered architectures. The translation 

of a request against a local interface is handled by the ZM.S server which will be 

described in Section 4.2.4. 

Example 3.2. In Figure 3.11, we define a base view, for applica-

tion7^'2. BVy extracts the flight information from the relational database when the 

customers use their MileageAward card to check in for their flights. Application#2 

uses BV\ to automate the update of the flight record in the object database. In 

Figure 3.11, we use "<= input" to denote that the value of card# will be fed by the 

application. Since flight# and date are tied to the local interface, MileageAward, the 

access mechanism of MileageAward can be used to update the flight record. 

Base views are derived from local interfaces to describe the data that the local 

DBMS is willing to import or export. A request % against a base view BV is trans­

lated to a request % against a local interface CI. On the other hand, an application 

can use base views to control how the data should be presented. For example, an 

application may use different base views to export data from the same database. 

This is a way to achieve abstraction relativism. Figure 3.12 gives a formal défini-
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Definition 3.5 (View Type: VT)  
A view type, VT, is denoted a-s fivr defines the interface of VT.  For 
example, the operations for managing the view ol)jerts. <J>VT consists of all the view olijects 
whcih are instances of VT. O 

Definition 3.6 (Local Interface: CI)  
A local interface, £J, is an instance of the ZtriLi view type, ZVT.  CX is a view object 
denoted as {oidcT^act-^Cj)- uniquely identifies CI. acj is modeled as a tuple of 
four elements; i.e., aci = {CI„sCI,^,CIi,C2ni)^ where £J,, denotes the structure of ctct< 
Cla denotes the access mechanism of fT£x, £2, denotes the type relations of (Tct. and £J,„ 
denotes the semantics of (Tct- £Ts = iS(£J), where S(C2) denotes the type definitions that 
constitute the structure of act- T-f' d' I'f an operator that com[)oses a set of datal)a.se access 
functions in a certain order. 

CI„ : y •-> 0,Â;, where S,  €  {h:, |  Ç Ag,} 

y provides a syntactic description of the data to lie retrieved from local DRMSs. K, is a local 
database acce.ss function that is apj)lie<l to a dataliase object, i.e., P,, and returns a subset 
of the data in database T?,. £%,, defines a mapping that maps y to a conijiosition of local 
database access functions. 

£Z. : {.V. I v. = •••• (•S(£I ) - Tt,,))} 

In other words, £1, is represented t»y a set of type translations. Each type translation, \,, 
defines a set of type relat ions iietween the types in a database oliject P,, denoted a.s F-p,, 
and the types in a local interface £1,, denoted a.s S(CJ^). <S(£T) ~ F%,, denotes a set of 
type relations Itetween two sets of types; i.e., S(CI-) and F-p,. The notation, denotes the 
liinding between the set of t.y]je relations and the object identifiei- oidi); of a database oi»ject 
D , ,  f i c T  s p e c i f i e s  t h e  o b j e c t  m a | ) p i n g  a n d  o t h e r  r u n t i m e  b e h a v i o r s .  T h e  s e m a n t i c s  o f  CI.  
CI,,I. is eml»edile<l in the definitions of lioth act and Set- O 

Figure 3.10: Definitions of View Type and Local Interface. 
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f  
define BaseVicw BVl as { 

structure {type NewFlighi:tuple(card#:inieger, 

define View VI as { 

structure ( type MileageBa)ance:tuplc(card#:integer, 

night#:string,dale:string) name:string, 

address:luple(strcet:string,city:string), 

nighls:sct(FLIGHT)) semantic ( card# <= input, 

flight#, date of type NewFlight <=> 

flightNo, date of type Flight 

in Locallnterface MileageAward 

type Flighl:tuplc(night#:string, 

dateistring, mileage:integer) 

method integer Mileage6alance(in integer card#) 

] //Endof BVI definition semantic { card# of type MileageBalance <=> 

card# of type MileageAwardMember 

in Locallnterface MileageAward, 
a 

^ Example 3.2 ^ mileage of type Flight <=> 

mileage of type FLIGHT-INFO 

in Locallnterface Reservation 
^ Example 3.3 ^ 

) //End of VI definilion 

Figure 3.11: Examples 3.2 and 3.3. 

tion for a base view. The translation of a request against a base view to a request 

against a local interface is also handled by the 2A4S server. For those applications 

that require integrated access to multiple databases, local interfaces and base views 

are not enough for modeling their needs. We introduce another layer of abstraction; 

i.e., views, to model integrated access through the integration of existing 2eus view 

constructs. We describe views in an integration model. 

3.4.3 Integration Model 

The role of an integration model is to express the conceptual relationships be­

tween the integration mechanism and the integration semantics. Our approach filters 

out the heterogeneity of underlying DBMSs through the mapping methodology that 

preserves the semantics and interrelationships of participating DBMSs. After the 

mapping, we have a single basic structure, the view object. Having a single basic 
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Definition 3.7 (Base View; BV)  

A ba-se view, BV,  is an instance of t.lie Zfcw.s view type, ZVT.  BV is a view olijec-t denoted 
as {OUIBVOKIBV uniquely identifies BV. (TBV is modeled a.s a triple; i.e., (TBV — 
{BV„,BVi.BVin), where BV„ denotes the structure of (TBV- BVi denotes the type relations 
of (Tflv. and BV,,, denotes the semantics <>( agv. 

BV.. = S(BV), where 

S{BV)  denotes t.lie type definitions that constitute the structure of ITBV-

BW, : {v, I \. - ("Ù/BV {S{BV)  =  5(£I , ) ) )}  

III other words, BV,  is repre.sented hy a set of type translations. Each fy|>e translation, \,, 
defines a set of type relations between the types in a base view BV, denoted as iS(SV), and 
the tyjies in a local interface £1,, ilenoteil a,s S{£I^). S{BV) ~ S{jCTJ denotes a set of 

type relations between two sets of types; i.e., and <S(£XJ. The set of type relations 
is bound to the object identifier IJ/I/BV "f a base view BV. <'>BV specifies the object mapping 
and other runtime liehaviors. The semantics of BV, BV,„, is eniVtedded in the definitions of 
both (TBV and O 

Figure 3.12: Definition of Base View. 
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structure facilitates the integration process. In the remainder of this section, we 

explain what the integration model is and how it  fits in the ZVM. 

Example 3.3. We define a view, Vj, for application#!. Vj retrieves the 

flight record from the object database. The mileage of each flight is retrieved from the 

relational database. Since application#! can use Vj to access the mileage for each 

flight in the flight record, the total mileage balance can be computed. The method, 

MileageBalance, takes the card# as the input argument and returns the mileage bal­

ance. 

We provide a formal definition of a view in Figure 3.12. Views are derived 

from existing views, base views, and local interfaces. This derivation is defined by 

an integration model. A request TZ against a view V is mapped to a number of 

requests. Each of these requests might be against other view, a base view or a local 

interface. The mapping is determined by how the view is constructed. For example, 

a view might be composed of a base view for exporting data from a voucher database 

and another base view for importing data to a purchase order database. We may 

issue a request against this view to close the purchase orders whose corresponding 

vouchers have come through. This request will spawn a request against the base 

view that exports new vouchers and another request against the base view that 

imports purchase order numbers for closing purchase orders. The entire process is 

coordinated by a transaction. The translation of a request against a view to other 

requests is handled by the ZMS server. Now we can describe the integration model 

which provides the basis for deriving views from existing views, base views, and local 
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Definition 3.8 (View: V) 

A view, V, is an instance of the Z t u f i  view type, ZVT. V is a view olijert denoted a.s 
(o/(/v, fv. <^v)- f>i>lv uniquely identifies V. ay is modeled as a tuple of four elements; i.e., 
fTv — (V„, V,, Vi, V,„), where V,, denotes the structure of a\. V, denotes the integration 
mechanism of ay. V( denotes the type relations of (T V ,  and V„, denotes the semantics of a\i. 

v., = «^(y), where 

<S(V) denotes the type definitions that constitute the structure of (Tv. Let <S(f;) lie the set 
of types that constitue the structure of a view ol)ject f,, and //; belongs to the set of all 
view olijects of the ZFRIIFI view type; i.e., \ZVT- T-fit Q denote the set of all the integration 
operators and type constructors supported liy the integration model. T.et G I'e an operator, 
/V/ be a set of types, and W lie a set of type constructors and integration operators. M 0 II' 

denotes all possible ways of applying the constructors or operators in to the types in A/. 
Now, we can define V, a.s follows; 

V; : .lyntariic — df .'^criptwn.'i i—> ((U, U'^zvt) 0 Q 

In other words, sijiil.artic ~ dt 's ir ip t . iwi . ' i  describes the integration mechanism. V, maps 
Hiint.artic — dtscriytiov» to the actual integration mechanism. The type relations, V,. can 
be denoted as a. set; 

V, : {,V; I :: ^(V) ^ G Azvt} 

In other words, V/ is represented liy a set of type translations. Each type translation, \,. 
defines a set of type relations between the types in a view V, denoted as <S(V), and the types 
in  a  view object ,  t / , ,  denoted as  \ zvT denotes  the  set  of  a l l  v iew objects .  <S(V)  — S(v , )  
denotes a set of type lelatioiis between two sets of types; i.e., iS(V) and 5(f,). The set of 
type relations is bound to the object identifier aidy of a view V. hy specifies the object 
mapping and other runtime behaviors. The integration semantics of V, V,„, is endtedded in 
the definitions of both rrv and O 

Figure 3.13: Definition of View. 
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interfaces. An integration model is used to deal with the integration issues that can 

be classified along two dimensions; i.e., data integration and control integration: 

1. Data Integration. There are a number of issues involved when the data from 

multiple databases are integrated [41]; for example, homonym, synonym, scale 

difference, type difference, missing data, conflicting values, semantic difference, 

structural difference, etc. The mappings between different object types may 

need to be defined to achieve the integration through object transformations. 

The multidatabase system must guarantee that the integrated data is semanti-

cally meaningful to applications. 

2. Control Integration. The behavior semantics of data objects and applica­

tion objects should be preserved or translated during the integration. The 

multidatabase system must also keep track of the configuration of participating 

DBMSs in order to coordinate the cooperation in different tasks; for example, 

concurrency control, transaction management, security, recovery, etc. Clontrol 

integration must ensure that the multidatabase system maintains consistent 

runtime behavior. 

Our integration model is a compatible extension of the EOM. There are two aspects 

in our integration model; i.e., the structural aspect and the semantic aspect. The 

integration model must have the expressiveness to represent various structural in­

tegrations; for example, tuple constructor (aggregation), set constructor (grouping), 

union of types (generalization), etc. These are examples of type constructors that 

integrate the types defined in view objects. Similarly, view objects may be directly 

integrated through integration operators. For example, a view can be defined as the 
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composition of a base view for exporting the flight information from the relational 

database, and another base view for importing the flight information into the object 

database. The integration issues are resolved in the definition of Zeus views. The 

semantic aspect of the integration model ensures that the integration resulted from 

the type constructors and integration operators preserves the integration semantics. 

We have briefly described an abstract integration model. There are a number of is­

sues that are better addressed by a concrete model.  For example, how does the ZVS 

check whether a view definition is robust in terms of its relationships with other views 

and its runtime semantics? How does the ZVS maintain the consistency of views in 

the view repositories? These issues are currently being investigated in Project Zeus. 

3.4.4 Computation Model (I) 

The computation model of the ZVS describes how the ZVS interprets requests 

and coordinates the handling of data. In this section, we describe the computation 

model of the ZVS in a more abstract fashion. We will provide a concrete description 

of the computation model in Chapter 4. We start with the OR model which is 

part of an object-relational interface developed at Iowa State University [90]. The 

OR model provides a formal basis for describing the integration abstraction, the 

integration mechanism, and the database access mechanism on top of a RDBMS and 

an ODBMS. We describe the OR model as an extension to the EOM. There are three 

basic constructs in the OR model; i.e., a template, a portal, and a view. Formal 

definitions of these constructs are listed in Figure 3.14. A template models a generic 

interface of a database type. Each database type may have multiple interfaces. The 

basic idea is to automate the generation of DBMS access routines by substituting the 
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Definition 3.9 (Template: T) 
A template, T, is modeled as a template oltject. T is denoted as a triple: (on/r, "'r-
where {nd-r iitiifjiiely identifies T, (Tf is state of T, and AT* is the lieliavior of T. a-r has 
thiee major components; i.e., the siiltstitiition specifications (rxv;), the related dataliase type 
(f77-„T-), and the associated template file (err,)- Ar defines the set of the methods that can 
lie ajiplied to rry. O 

Definition 3.10 (Portal: V) 
A portal ol)ject, V, is modeled as a tri]tie: {nid-p ,  a-p .  ù^p) ,  where oi .d-p  uniquely identifies "P, 
a-p is the state of V. and Ap is the Tiehavior of V. n-p defines a pair of program objects, 
denoted as {VO^^VO-i), and their related dataliase types. Semantically, V descrilies how to 
move and transform the data from one DBMS to another in a way consistent with application 
semantics. Functionally, VO;, where i. = 1 or 2, desciilies a mapping, Mpo, • 5, 
where A an B are either a set of oltjects or a flat file, K , is a function that takes A as 
its palameter, and B is the result of the mapping. Possible coiTilvinations of A and B are 
{A,B)  — (A%,,  , f )  or ( f ,  A-p,} ,  where  A%,,  i s  the  set  of  objects  . s tored in  database  o l i ject ,  V,.  
and T is a flat file. O 

Definition 3.11 (OR View: VOR) 

All OH view, VOR. is denoted as a triple: ( o/Jvon-''' VOB--^ VOB)' where <>IDV„„ uniquely iden­
tifies Vow, is the state of VoR, and Av„„ is the behavior of VOR- <^Von describes the 
structures defined in VoR, denoted as S{Vnn]. the type relations lietweeii S{VOR) and F-p, 
and the selection criteria for the data to lie retrieved from the dataliase object T>,. F-j), 
denotes the tyjies of the objects stored in database oliject, V,. O 

Figure 3.14: Definitions of Template, Portal and OR View. 

constructs in a template file based on a user-defined view. The resulting template 

file tailors to the requirements of a specific application and becomes a customized 

interface to the DBMS. Stonebraker [102] introduced the notion of a portal in 

POSTGRES as an intermediate construct between applications and a DBMS. The 

function of a portal is to provide a user access to the set of objects generated on 

a controlled basis. In the OR Interface, a portal is derived from an OR view and 

a template, and serves as a runtime construct that may access a RDBMS or an 

ODBMS. A portal, V, is modeled as a portal object. In Definition 3.10, M-pQ. is 

derived from the interface of the DBMS and the methods defined in the objects of 
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related databases. In the OR Interface, views are used to facilitate the integration of 

data of different types. An object based view is a virtual relation where the data is 

stored in an object type within an object database. A relation based view is a virtual 

object where the data is stored in one or more relations in a relational database. 

In the OR model, an OR view is modeled as a view object. The OR Interface 

system guarantees that given an OR view and a template, there is a consistent and 

well-defined mapping that maps the view definition and the template file to a pair 

of DBMS access routines; i.e., a portal. The notion of an OR view is different 

from the view defined in Definition 3.8 in the sense that an OR view only models 

the integration between RDBMSs and ODBMSs. The notion of a view defined in 

Definition 3.8 models the integration of any types of DBMSs. 

3.4.4.1 Generalization of the OR Model We can generalize the OR 

model to provide another level of detail  in the theoretical foundation of the ZVM.\ 

i.e., exactly how local interfaces generate local database access routines. Notice that 

the Zeus view is similar to the OR view in the sense that both constructs describe 

integrated access to heterogeneous DBMSs. However, the Ztxis view is more generic 

and supports multiple levels of abstraction. Therefore, we replace the OR view by the 

Zeus view. We then tie the OR model to the integration model by linking the notions 

of template and portal to the local interface. In Figure 3.15, we provide definitions 

for a DBMS interface and a multidatabase interface. As can be seen from Definition 

3.12, the notion of OR views is replaced by the notion of a global request against 

a local interface. The notion of portals exists as the supporting runtime constructs 

behind the mapping, M.^.. In Definition 3.13, the interface of a multidatabase type 
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Definition 3.12 (DBMS Interface: V I )  
A DBMS interfare, %)%, is denoted as a set of pairs. F,at:li pair is denoted as (TÏWMT;), where 

7; is a template, and Mr, is a map satisfying; 

•Mr, : {Ti,7i,£I) i-> , where 

T Z  is a request against a local interface (£î) associated with V I ,  At», is the set of ol)jects 
stored in a databa-se object (%),), and A^ Ç A-p,. O 

Definition 3.13 (Multidatabase Interface: M I )  
Cliven a gloltal request, 7?,, and a set of view olijects referenced in 72.; i.e., VO. MI derives 
a sequence of well-defined mappings, TTxi, denoted a.s: 

Tt^x : (72, VO) = (7-,72„£î.)} U A^,, where 

72; is a request, £J, is a local interface, and |J A^ is a subset of the oVtjects belonging to the 
accessed <]atal»a.se ol»jects. O 

Figure 3.15: Definitions of DBMS Interface and Multidatabase Interface. 

is defined as a sequence of mappings. Based on the above definitions, we can view 

the computation model of the 2V<S as a functional composition of MI and a set of 

VT plus a request as a parameter; 

CM(71) = [MI 0 d(U^ T)I.i)](7Z), where 

CM denotes the computation model as a function that takes a request 7Z as the 

parameter. The notation, o, represents the functional composition of mappings. The 

notation, d, denotes a selected subset of the set following d; i .e. ,  d(ij/  T^^i) Q U, 

Figure 3.16 gives an example that illustrates the interfaces and mappings we just 

defined for the computation model of the ZVS. The interfaces and mappings of 

database objects, multidatabase objects, and database types have concrete object and 

runtime semantics. On the contrary, the interfaces and mappings of a multidatabase 

type only has abstract object and behavioral semantics. There must exist a well-
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request DT. 
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MD, portal 
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Figure 3.16; The mappings in the ZVS. 

defined mapping such that a global request can be mapped to runtime constructs. 

This is defined and verified within the theoretical foundation. The shaded area in 

Figure 3.16 illustrates how a global request is turned into runtime constructs after 

reaching the interfaces of A4VT, MT)^^ VT^ and VT 

3.5 Summary 

The notion of Zeus views has abstract object semantics. The Zeus views are 

independent of the representations and storage of the data involved. The represen­

tation of Zeus views is stable; i.e., independent of the size or type of the described 

data. The Zeus views are uniform since they are all modeled by a common data 

model, i.e., the EOM. The Zeus views describe the mappings between DBMSs and 

applications in terms of type translations and object mappings which are adjustable 

to application semantics and independent of participating DBMSs. Base views and 

views are freely composable to achieve different degrees of integration and different 

levels of interoperation among participating DBMSs. This allows us to support se­

mantic relativism in the ZVM. The Zeus views are sharable across organizational 
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and administrative domains. The effect of computing environments is separated from 

the definitions of the Zeus views. This is how we provide the basis for distributed 

abstraction modeling. All the above characteristics of the ZVM. explain how the 

ZVM. provides a solution to the modeling problem that we discussed in Chapter 1. 

Both the theoretical foundation and the computation model have concrete semantics 

implemented by the ZVS. In Chapter 4, we will elaborate on how we materialize 

these concepts and solve the design problem that we addressed in Chapter 1. 
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CHAPTER 4. THE ZEUS VIEW SYSTEM 

The short-term goal of Project Zeus is to develop a multidatabase system, the 

Zeus Multidatabase System {ZM.S}, as a test bed for the ZVM. The complex­

ity of developing such a large-scale distributed system calls for a complete method 

that provides a solution for the system design problem. We chose to apply object-

oriented techniques and software engineering concepts in our method. To apply 

object-oriented techniques, we introduce CORBA [122] to provide a distributed ob­

ject infrastructure. The concrete part of our computation model relies on such an 

infrastructure to attach runtime semantics to the Zeus views. To apply software 

engineering concepts, we introduce the notion of frameworks to promote design and 

code reuse. Our method allows us to achieve an extensible and portable architectural 

design for the ZMS. For the remainder of this Chapter, we will elaborate on our 

method and the architectural design of the ZM.S. A number of implementation 

issues will be discussed based on our established experience with the development of 

the ZMS. 

4.1 Methodology 

Our method falls into the category of methodologies in object-oriented design 

and analysis [42]. We start with the description of a distributed object infrastructure 
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based on CORBA [122]. We show how a concrete computation model is created by 

integrating this infrastructure with the ZVM. 

Although conventional procedural and structured programming has provided 

an approach to modularized design, it is not powerful enough for dealing with the 

complexity of large-scale programming. To deal with the complexity of the ZM.S 

development, we decided to use frameworks. Ralph Johnson gave a definition of 

frameworks in [116]: "A framework is a set of classes that embodies an abstract de­

sign for solutions to a family of related problems." The use of frameworks adds five 

attributes to our approach that make the development of large-scale distributed sys­

tems feasible; i.e., code/design reuse, portability, extensibility, and maintainability. 

Code/design reuse is the result of grouping commonalities in frameworks. High-

level frameworks contain reusable abstract design which leads to low-level code reuse 

through class libraries. Portability is achieved through the separation of machine-

dependent and machine-independent design. The machine-indepcndent design is fully 

portable. Extensibility refers to the ability to extend and specialize functionality such 

that the structure and behavioral semantics of the system design can be selectively 

changed. Since running ZMSs share high-level design specifications, the interoper­

ability among abstract declarative interfaces carries through low-level class libraries 

which in turn lays out a basis for interoperation among ZMSs. The above-mentioned 

attributes simplify the development of the ZM.S and increase the maintainability of 

the ZM.S due to the close correlation between the abstract design and the actual 

system code. 

The runtime ZM.S can be described by a client-server model. There is a direct 

correspondence bewteen the classes in frameworks and the components of the ZM.S. 
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Figure 4.1: Our method in the development of the ZM.S. 

We will discuss common design dimensions for network servers and explain the client-

server architecture of the ZMS later in this Chapter. Figure 4.1 gives an overview of 

the ZMS development and shows where our method fits in the overall picture. The 

development of the ZMS starts with a formal foundation; i.e., the ZVM, that deals 

with basic multidatabase issues. The solution provided by the formal foundation is 

then embedded in the system design. Our system design is object-oriented. The 

concrete system design is achieved through the refinement and assembly of frame­

works that provides the class libraries for system development. As soon as a runtime 

system has been assembled, the result of the system test will be useful for adjusting 

or expanding the formal foundation or the system design. The entire development 

cycle can be documented through a system specification. 

4.1.1 Distributed Object Infrastructure 

The object concept has been applied to the foundation and design of the ZMS. 

In [81], the object technology is identified as an effective approach for controlling 
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the complexity of heterogeneous distributed computing systems. The ZM.S is a 

large-scale distributed system. We have selected the Common Object Request Bro­

ker Architecture (CORBA) [122] as the basis of our distributed object infrastructure 

in order to apply the object concept to our approach. In this section, we describe 

how a CORBA-compliant object request broker (ORB) can achieve wide-area dis­

tributed abstraction defined in Chapter 3 and provide the runtime support for the 

ZM.S. We will  t ie this runtime support to the computation model of the ZMS. 

First of all, we want to briefly describe what CORBA is. The Common Object 

Request Broker Architecture, produced by the Object Management Group, is a stan­

dard that specifies an architecture for distributed object management. The ORB 

provides the mechanisms by which objects transparently make requests and receive 

responses. As stated in [129], the ORB provides interoperability between applica­

tions on different machines in heterogeneous distributed environment and seamlessly 

interconnects multiple object systems. A review and analysis of CORBA can be 

found in [81]. CORBA provides a declarative specification language, the interface 

definition language (IDL). Specifications of CORBA objects are separated from their 

implementations. Many commercial implementations of ORB have become available 

in recent years. We will explain how a CORBA-compliant implementation of ORBs 

fits in the ZMS in Section 4.1.4. 

Support for Distributed Abstraction. The support for distributed 

abstraction via the object concept has a number of aspects. First of all, our no­

tion of views has abstract object semantics. The construction of views from existing 

views provides multiple levels of abstraction. CORBA objects supports abstrac­
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tion. Second, we combine the object-oriented concepts with the layering technique. 

The application semantics, services, and the ZMS components are encapsulated in 

well-defined interfaces. The interfaces are further organized in layers or modules. 

CORBA objects supports encapsulation through interface specifications. Third, our 

view mechanism supports different kinds of transparency. Applications are shielded 

from the heterogeneity, distribution, and autonomy of distributed components. Each 

distributed component is modeled as an object whose properties are encapsulated 

by a well-defined interface. The interactions among the distributed components only 

depend on the interfaces, not on their locations or internals. This implements trans­

parency to heterogeneity and distribution. Each distributed component may change 

its internal structure without changing its interface. This implements the autonomy 

of distributed components. Therefore, transparency can also be achieved by CORBA 

objects. We use the object-level save and restore to facilitate the management of ob­

ject repositories. The source that deals with the I/O is also reduced in size. Object 

persistence can be built on top of CORBA. Finally, interoperability is much easier to 

achieve at the interface level. CORBA objects supports specification-level interoper­

ability. Figure 4.2 shows an example of how the object technology can simplify the 

development of advanced applications. Without the object support, all the I/O and 

network communications must be done through a set of basic data types. Adding an 

extra layer of object support, applications are transparent to the details of basic I/O 

and network communications. Other object support, e.g., object persistence, can be 

implemented on top of CORBA. 
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Figure 4.2: Object persistence and transport. 

Runtime Support. The runtime behavior of Zeus views comes from a 

two-step mapping, view object CORBA object i-> programming-level object. View 

objects are purely high-level abstractions. CORBA objects may encapsulate services, 

DBMSs, etc. Programming-level objects can be used in programming languages as 

program variables. The mappings between view objects and CORBA objects are han­

dled by the ZM.S. The mappings between CORBA objects and programming-level 

objects are determined by a CORBA-compliant object request broker. At runtime, 

application programs rely on programming-level objects to perform the computation. 

CORBA objects have concrete runtime semantics which is provided in the forms of 

object invocation and method dispatching by CORBA-compliant object request bro­

kers. 

4.1.2 Computation Model (II) 

In Chapter 3, we described the computation model, C M ,  as a function deter­

mined by the multidatabase interface [MT) and a set of database interfaces {VI). A 
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global request is a parameter of CM. In other words, CM accepts a global request, 

processes the request based on MX and VI, and returns a result. Now that we have 

the runtime support from ORBs, the computation model can be expanded based on 

the two-step mapping. Suppose denotes the set of all view objects, Aj denotes 

the set of all CORBA objects, and A^ denotes the set of all system objects^, then 

we can denote the object system of the 2MS as A^, where A^ = Ay;j- U Aj U A^. 

The computation model, CM, can be described as a sequence of mappings. First, 

CM accepts a global request which is associated with a subset of A^. The ZMS 

creates a transaction that captures the semantics of the global request. CM maps 

the global request to a set of sub-requests against the CORBA objects based on M2. 

Each of these sub-requests are then mapped to a set of database access routines. The 

ZMS updates the transaction to keep track of the associated sub-requests. As soon 

as the mappings are completed, the ZMS starts to execute the transaction. The 

information embedded in the transaction captures the precise semantics of the global 

request. We will elaborate on how the above mappings are materialized in Section 

4.2.4. 

4.1.3 Zeus Frameworks 

We follow the definition of frameworks by Ralph Johnson [116] and define each 

of the Zeus framework as a set of classes. The refinement of the Zeus frameworks 

creates subframeworks which can also be deemed as the Zeus frameworks. Figure 

4.3 shows the Zeus frameworks and how they are refined and specialized to create a 

running ZMS. There are five top-level Zeus frameworks: Zeus framework (^^), 

^ System objects refer to the runtime ZMS components. 
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Database framework {J'jj)-, Integration framework {Tj), Environment Framework 

and Domain framework We will elaborate on these frameworks when 

we describe the architectural design of the ZM.S. 

Refinement. The five top-level Zeus frameworks cover the high-level de­

sign of the ZJ\AS. These frameworks can be refined to form subframeworks that 

captures domain-specific details. For example, the database framework may be re­

fined to a relational DBMS subframework and an object DBMS subframework based 

on the data model. Each subframework retains the common attributes inherited from 

the database framework and adds more attributes to cover model-specific features. 

The relational DBMS subframework can be further refined to a subframework for a 

specific RDBMS; e.g., Oracle. The subframework for Oracle can then be specialized 

to produce a class library for Oracle on UNIX-based platforms. The same refinement 

and specialization process can be done in a similar manner for other top-level fiame-

works and other subframeworks. It is clear that high-level frameworks are highly 

portable and reusable. Interoperability exists among low-level subframeworks and 

class libraries because they inherit the interfaces defined in high-level frameworks. 

The entire design is extensible since frameworks, subframeworks, and class libraries 

can be added at different levels of the design to accommodate changing requirements. 

Assembly. In our framework-based architectural design, the low-level class 

libraries will contain the bulk of the 2MS code. Minimal coding is required to as­

semble a running ZM.S for a specific permutation of computing environments and 

participating DBMSs. A running ZMS is an instance of the ZMSystem^ class which 

^VVe will elaborate on ZMSystem in Section 4.2.2. 
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Figure 4.3: The Zeus frameworks. 

defines the configuration of the ZMS and how the ZMS should be initialized fol­

lowed by the invocation of other ZM.S components.  To assemble a running ZM.S^ 

the low-level class libraries used should be identified and the ZMSystem object should 

be implemented. Like the approach described in [121], the Zeus frameworks provide 

two types of application program interfaces (APIs): a client API and a framework 

API. The client API allows the application programs to access the frameworks. The 

framework API allows the application programs to customized the code provided by 

the frameworks. 

4.1.4 Client-Server Model 

The Z M S  has a client-server architecture. To facilitate the discussion of our 

view of a client-server model, we introduce the notations below to describe our view 

of a client-server model. A client-server system, CS^ can be modeled as a triple: 

CS — {Tlc,T^s-,T^r)-,Tlr =  U / w h e r e  
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TZc is a set of clients in TZs is a set of servers in CS, TZr is a set of pair-wise 

relationships between clients and servers, c G TZc, s 6 TZsi and j/j(c, 5) defines a set 

of reciuest-response protocols between c and s. It is possible that some components 

of CS can play the roles of both client and server. We describe a client as a runtime 

entity that request services from servers. On the other hand, a server is a runtime 

entity that processes the requests from clients. A request-response protocol has two 

parts: client-side protocol and server-side protocol. A client or a server may support 

multiple protocols. However, to initiate a conversation, a specific protocol must be 

identified as part of the client-server contract. Client-side or server-side protocols 

model the reactiveness of a client-server architecture; i.e., what messages clients or 

servers will respond and how. Now we can explain how the client-server model is 

applied to the ZM.S. We start with a discussion of middleware. 

Middleware. Middleware is commonly referred to as the communication 

infrastructure that interconnects heterogeneous platforms and software systems [14]. 

In our project, middleware refers to the object request broker (ORB). The ORB 

provides transparent object transport, remote method invocation and multi-lingual 

support. Multiple object request brokers interoperate at the interface level. Using 

the ORB in our design avoids imposing strict requirements on participating systems 

since the interoperability requirements are embedded in the ORB. 

Client-Server Architecture. Figure 4.4 shows a client-server architec­

ture based on the use of ORBs. The ORBs provide an object layer on top of other 

network services; e.g., remote procedure calls, name service, etc. The architectural 

design of the ZM.S results in a class hierarchy. Some of the instances of the classes 
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Figure 4.4; ORBs and Client-Server Architecture. 

in this class hierarchy correspond to the ZM.S runtime components which may be 

network servers or clients. The design of network servers has a number of dimensions: 

configuration, protocol, and architecture. The configuration dimension decides how 

a network server is initialized and identified, and how a service is bound to network 

servers. The protocol dimension describes how information is exchanged among 

network servers or between network servers and applications. The architecture di­

mension determines the overall structure of a network server that provides services 

and implements specified protocols. For example, a multi-service network server dis­

patches recjuests to other network servers, a concurrent network server can accept 

multiple client requests concurrently, etc. These design dimensions have been con­

sidered throughout the design of the ZMS. We will explain what implementation 

issues are associated with these design dimensions later in this Chapter. 

4.2 The Zeus Multidatabase System 

Figure 4.5 gives an overview of the Z M S .  The logic of the ZVM. is embedded in 

the server. The host manager and cooperating agent serve as the liaison between the 
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DF: Domain Framework Persistent Object 

Manager 
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calls to components of the environment framework. 
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Cooperating Agent Host Manager 
; Agents ; 
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Services 

Object Request 
Broker 

Communication Protocols Request Path 

Figure 4.5: Z M S  frameworks, major Z M S  components, and a scenario. 

server and the clients, and between the server and the DBMSs individually. Both the 

host manager and the cooperating agent are referred to as the ZM.S agents. Through 

the server and the ZA4S agents, the clients are able to access multiple, heterogeneous 

and distributed DBMSs transparently. To illustrate how the ZM.S works, we provide 

an example and a global access scenario in Figures 4.6 and 4.5, respectively. Our 

design method achieves the following design criteria that we addressed in Chapter 

1: portability, scalability, interoperability and extensibility. For the remainder of 

this section, we will describe the architectural design and major components of the 

A Scenario. The numbered arrows in Figure 4.5 depict a global access sce­

nario. The above scenario may be triggered by double-clicking "101 1990 Smith, Larry" 

in the graphical user interface provided by the Zeus client in Figure 4.6. In step (1), 
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a global request is originated from a ZM.S client and sent to the host manager. The 

host manager finds an available ZM.S server via the network services (step (2')), 

and routes the request to the server in step (2). The server interprets the request 

by interacting with the persistent object manager and maps view objects to run­

time objects and threads by contacting the object request broker in step (3'). In 

step (3), the server finds available cooperating agents to send the requests spawned 

from the threads generated in step (3'). The cooperating agent routes the request to 

the DBMS in step (4) and the DBMS responds to the request in step (5). Suppose 

that the cooperating agent has received data from the DBMS, the data are sent to 

the requesting host manager in step (6) and at the same time a message is sent to 

the server in step (7) indicating that the request has been served on behalf of the 

thread. Step (6') shows that the data transfer may require interactions with network 

services and the object request broker. The server's transaction manager determines 

whether the transactions related to the original request should be committed. When 

the transaction is committed, the server sends a message to the host manager in step 

(8). The host manager makes the data visible to the client in step (9). 

4.2.1 Architectural Overview 

Now, we can depict a novel architecture for the ZM.S. The ZMS architecture 

is composed of a kernel and a set of interface components. The ZMS kernel appears 

within a circle in Figure 4.7. The ZMS kernel provides the major functionality of 

the ZMS. The kernel is integrated with the local computing environment via a set of 

interface components: the Common Access Interface, the ZMS Resources Interface, 

the Network Services Interface and the Cooperating DBMS Interface. The Common 
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Zeus Client 

Airline MileageAward Program 
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104 1991 L«wu, Jauna 

iMU«agfAward| Flighl-lnfo | ; RewrvaHon 
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Object DBMS 

Flight Record; 
02/21/91 Flight-102, Da Moires - St. Louis 
11(03/91 Flight-201, Chicago - Minneapolis 
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Query by Cuslomer Naine| 

Query by Card# 
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Done 
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Relational DB MS 

Database 
relation reservation (name, flight#, date, confirmation#) 
relation flight-info (flight#, from, to, mileage) , 

I Report I • Query | Sort by| Quit | j Help | About | 

Figure 4.6: The database schema of the running example and a sample Zeus client. 
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Figure 4.7: The ZMS architecture. 

Access Interface allows the ZM.S clients to access ZMS resources or the data from 

participating DBMSs, e.g., a ZMS client may accept a request to browse existing 

views. The ZMS Resources Interface provides management interfaces between the 

kernel and the ZÀ4S resources. The Network Services Interface links the kernel to 

local or remote hosts. The Cooperating DBMS Interface provides the link between 

the kernel and participating DBMSs in the way that the ZMS can coordinate the 

requests and responses between the ZMS clients and the DBMSs. 

We start the architectural design of the Z M S  by identifying the objects and 

classes that model the functionality and requirements of the ZMS. These objects 

and classes are later mapped to major components of the ZMS. The relationships 

and responsibilities of the major ZMS components are captured by the class hier­

archies and behavioral semantics of the methods defined for ZMS classes. Major 

components of the ZMS are shown in the shaded areas of Figure 4.5. The architec­

tural design of the ZMS is based on a class hierarchy, H = ^UC, where A is a set of 

abstract classes, and C is a set of concrete classes partially ordered by a class-subclass 
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Figure 4.8: Part of the ZM.S Class Hierarchy. 

relationship. Part of W, i.e., "H , that corresponds to the high-level design of the 

ZM.S is shown in Figure 4.8. Ji is partitioned into five disjoint sets of classes where 

each set forms one of the five top-level Zeus frameworks; labeled 

and Tj in Figure 4.8. These five Zeus frameworks are refined, and finally assembled 

and instantiated to create a runtime ZM.S. 

To guarantee that the notion of frameworks will be useful to the development of 

the ZM.S, we impose design constraints on the properties of Zeus frameworks. We 

define these constraints by modeling the set of all the Zeus frameworks as a directed 

acyclic graph. The framework-based design consists of two steps: the refinement of 

frameworks and the assembling of the runtime system. The design process spawns a 

set of design frameworks. We model these design frameworks by a directed graph G. 

A graph G = (X, U) is composed of: 
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1. A finite set X = { x ] ^ , a ; 2 , t h e  e l e m e n t s  o f  w h i c h  a r e  c a l l e d  n o d e s .  E a c h  

node corresponds to a design framework. The set of subscripts of x E X is 

denoted as N-^. We refer to a node that is neither a root node or a leaf node 

as an interior node. 

2. A subset U of the Cartesian product A' x X, the elements of which are called 

arcs. Each arc corresponds to the relationship between a parent framework 

and a subframework. A subframework inherits all the classes of its parent 

framework. In other words, the design embedded in a parent framework is fully 

reusable by its subframework. An arc from to zg represents an inheritance 

relationship. 

Different graphs correspond to different design alternatives. One of the goals of our 

approach is to identify automatable ways of analyzing framework graphs and to pro­

vide guidance for designers to choose a good and possibly the best design. The criteria 

for a good design are based on software metrics and whether or not the design criteria 

are met. The structure of framework graphs mirrors the refinement of frameworks 

and reflects the domain knowledge. We have developed a set of constraints that re­

strict the structure of the graph in order to filter out favorable design alternatives. 

Constraints A and B are given below as an example. Figure 4.9 shows some of the 

possible patterns that may exist in a framework graph and its subgraphs. 

Constraint A: A source in G must have more than one subframeworks, a sink in G 

must have siblings and an interior node in G must have siblings and more than one 

subframework. O 
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f  
(No.) (Yes.) (Yes.) (No.) A sample framework graph 

—- (The enclosed nodes can be coalesced.) 

: framework or subframework : leaf subframework 

Plgme 4.9: Possible relationships between parent frameworks and subframeworks. 

Constraint B: Suppose G is a framework graph, the relationship between a parent 

framework and a subframework in G can be one-to-many or many-to-one. Many-to-

many relationships may exist i f  and only if  G satisfies Constraint A and the set of 

arcs (Ar) between a set of parent frameworks (P) and the set of siibframetuorks (S) 

associated with P is a strict subset of P x S; i.e. ,  Ar C P x S.  O 

A source in G must have more than one subframework. Otherwise, the source 

can be coalesced with its only subframework. In other words, a sink must have sib­

lings and an interior node must have siblings and more than one subframework. This 

is why we need Constraint A. If Aj- = P x 5", then all the frameworks in P can be 

coalesced into one parent framework. The semantics of Constraint B can be inter­

preted as a way to keep the design concise and increase the reuse efficiency while 

avoiding redundant work. 

For the remainder of this Chapter, we describe major Z M S  components in two 

aspects; modeling and architecture. The modeling of an ZM.S component identifies 



www.manaraa.com

76 

the classes and objects as well as their associated responsibilities for meeting the 

functionality and requirements of the 2À4S component. The relationships among 

classes and objects, and how the design is mapped to the client-server model are 

captured in the description of the architecture of the component. 

4.2.2 Top-Level ZMS Design 

We start the discussion of the ZM.S architectural design by identifying the seven 

top-level classes that form the Zeus framework, i.e., ZVSObject, ZVSServer, 

ZVSystem, ZVSCIient, ZVSLCE, ZVSAgent, and ZVSManager. ZVSObject is an ab­

stract class. All system classes are subclasses of ZVSObject except ZVSLCE. We use 

ZVSObject to group common attributes and operations of all system objects. For 

example, ZVSObject has an attribute that links to services of the computing environ­

ment. Subclasses inherit this attribute from ZVSObject and thus all objects possess 

a link to their own computing environment. ZVSObject also has two common op­

erations, startup and shutdown, that coordinate the initialization and termination of 

services offered by the individual ZM.S components. 

Runtime System. A runtime Z M S ,  "P, is created by linking an instance 

of ZMSystem with a set of class l ibraries.  The major functionality of the ZM.S 

system object is to coordinate the start-up and shutdown sequences for major ZM.S 

components including the ZMS server, the ZMS clients, and the ZMS agents. The 

the ZMS server is an instance of ZVSServer. Instances of ZVSCIient correspond to 

t h e  Z M S  c l i e n t s .  Z V S C I i e n t  d e f i n e s  t h e  c o m m u n i c a t i o n  p r o t o c o l  b e t w e e n  t h e  Z M S  

clients and other ZMS components. ZVSAgent is an abstract class that contains the 
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common attributes and properties of the Z M S  agents. 

Network Servers. ZVSManager is an abstract class that provides a tem­

plate for modeling the ZMS network servers in three dimensions: protocol, service, 

and configuration. Each network server inherits a command table attribute that 

contains the syntax followed by clients to communicate with the network server. 

Multi-service network servers inherit a Dispatch operation that handles the dispatch­

ing of requests to appropriate subordinate network servers. Each network server 

also inherits a Configuration attribute that contains the configuration of the network 

server. 

Architecture. The ZM.S has a client-server architecture. The client-

server relationship may exist between any pair of the ZMS components which spread 

over a distributed network of hosts. The client-server relationship is described by the 

behavioral semantics bound to the specifications written in IDL. To bring the entire 

ZMS up and running, a runtime ZMS system must be started first. Then, the 

network servers of the ZMS are started. A normal shutdown of the ZMS starts 

with the shutdown of the ZMS network servers. The ZMS runtime system shuts 

down after the shutdown of all the ZMS network servers is completed. 

4.2.3 ZMS Environment 

The Z M S  Environment is modeled by the environment framework which 

includes four major components of the surrounding computing environment; network 

services, operating system services, the object request broker, and the persistent ob­

ject store. Since the ZMS components may run in different computing environments; 
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e.g., different platforms, different operating systems, etc., an instance of ZVSLCE ex­

plicitly determines the computing environment within which the ZM.S component 

is running. Tjr describes the high-level interface specifications of the services offered 

by a ZVSLCE object. The implementations of these services may vary with different 

computing environments. A refinement oî JFj^ will spawn the matching subframe-

works and class libraries that capture the specialized features of a specific computing 

environment. However, all ZMS components still have a uniform interface to ex­

ternal services offered by a ZVSLCE object due to the common high-level interface 

specifications. 

Architecture. The design of the 2M.S relies on interoperable object re­

quest brokers [118, 122] to provide a distributed object infrastructure. Such an in­

frastructure along with persistent object stores allow us to apply the object concept 

and modeling power at different levels of the ZM.S development. We require that all 

hosts that run the ZM.S components must be running a CORBA-compliant object 

request broker and must have access to a persistent object store. Therefore, the ob­

ject transfer and remote method invocation can be done through the interoperation 

among the object request brokers and persistent object stores running on participat­

ing hosts. Network and operating systems services can be encapsulated in CORBA 

objects where interface specifications are bound to actual implementations. 

4.2.4 ZMS Server and ZMS Client 

The ZM.S server interacts with the ZMS agents to receive requests from clients, 

interpret the request, and generate requests to retrieve data on behalf of the original 
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^ ZMS Request ^ZMS Transaction ^ZMS Thread ^—>^[MS Thread Element ^Thread Utility ^ 

Applicalion level semaniics Zeus View Mechanism ^^^ZMS-level semantics Host-level utility 

Figure 4.10; Request, transaction, and thread in the Z V S .  

request. In our design, the data are sent directly to the requesting agents and the 

ZMS server coordinates the commitment of transactions resulting from the request. 

T h e  Z M S  s e r v e r ,  Z V S S e r v e r ,  a n d  i n s t a n c e s  o f  i t s  s u b c l a s s e s  i m p l e m e n t s  t h e  Z V M .  

The ZMS server is modeled as a multi-service server that has multiple managers. 

The ZMS server along with its managers implement a computation model that 

supports threads and transactions. 

Request, Thread, and Transaction. A thread is a single sequential 

flow of control. The thread utility of an operating system allows multiple lightweight 

threads to run concurrently within a single address space. As can be seen in Figure 

4.10, application logic is embedded in ZMS requests. The ZVM creates correspond­

ing transactions for certain types of the ZMS requests. A ZMS transaction is the 

ZMS's view of the associated application logic. Multiple threads may be spawned 

from a ZMS transaction. A ZMS thread corresponds to a task identified by the 

ZMS. A thread may in turn generate multiple thread elements that coo])erate to 

complete a task. A thread element is implemented by the thread utility or operating 

system utilities. There is a one-to-one correspondence between the thread element 

and the thread supported by an operating system. 

Computation Model. The computation model defines how the Z M S  

interprets the request and coordinates the handling of data; i.e., the runtime seman­
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tics of the Z M S .  We require that all the Z M S  components have a contacting 

CORBA-compliant ORB in order to support the two-step mapping described in Sec­

tion 4.1.2. The computation model described in Section 4.1.2 is implemented by the 

notions of requests, transactions, and threads. The threads are used to implement 

sub-reciuests. We use a thread element to further implement a thread by the thread 

utility of the hosting operating system. Therefore, the computation model is imple­

mented by the ZMS components defined in ZMSServer, ViewMgr, TransactionMgr, 

and Thread Mgr. 

Z M S  Client. The Z M S  client refers to any runtime entity that is exter­

nal to the ZMS and interacts with the ZMS components. A ZMS client can be 

a Cl ZMS client, a C2 ZMS client, a program that interacts with a participating 

DBMS, or a remote ZMS server. Cl ZMS clients provide services for the man­

agement of views including the creation, deletion, update, browsing and installation 

of views in the view repository. C2 ZMS clients provide services for users to access 

global resources through views. 

Architecture. Figure 4.11 shows two IDL source files that specify ZVS-

Manager and ZVSServer. The syntax of IDL is similar to that of C++ except that IDL 

is purely declarative. The interface definition of ZVSManager specifies the communi­

cation protocol for network servers. The header files, ZVSRequest.idI and ZVSLCE.idi, 

are included in ZVSManager.Idl since both ZVSRequest and ZVSLCE.idi are used in the 

definition of ZVSManager. The specifications defined in ZVSManager are acquired by 

ZVSServer through inheritance. A ZVSServer object has attributes linked to its man­

agers which are all network servers and have back pointers linked to the ZVSServer 
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// IDL source file: ZVSManagcr.idl 

#include <ZVSRcqucst.îdl> 

#include <ZVSLCE.idl> 

interface ZVSManager 

l 
Q-eadonly attribute CommandTableEntiy CmdTbl; ) 

attribute ZVSScrviccType ST; 

communication syntax 

ReuimCode Dispatch(in short Destiny,in ZVSRequest request); 

RetumCode ReceiveRcquest(in ZVSLCE cnv.in ZVSRequest request); 

RetumCode RespondRcqucst(in ZVSLCE env.oul ZVSRcquesi response); 

These operations can access the command table that defines the syntax 
of the communication protocol 

H IDL source file: ZVSScrvcr.idl 

^include <ZVSObjccLidl> 

^finclude <ZVSManagcr.idl> inheritance 

interface ZVSServcr : ZVSObjcct, ZVSManager 

If attribute ZVSLCE LCE; If inherited from ZVSObject 

readonly attribute siring CellfNameSize]; 

attribute ClicntMgr CM; // pointer 

attributeThreadMgrTM; //pointer 

// Dispatch(in short Destiny,in ZVSRequest request); 

// inherited from ZVSManager 

Figure 4.11: IDL examples. 

object. Therefore, the ZA4S server and its associated managers do not have to run 

on the same host. Each of these network servers may have its own syntax and im­

plementation of their communication protocols through different bindings of the IDL 

interface specifications of the ZMS to the actual implementation. As can be seen 

in Figure 4.11, each function appeared in the IDL source files has a return type, a 

function name, and a signature. The implementation of each function appears in an 

expanded template file resulting from compiling the associated IDL source file. 

4.2.5 ZMS Agent 

The Z M S  agents are either host managers or cooperating agents. The host man­

ager establishes and maintains the communication links between the ZMS clients 

and the ZMS server, or between the Zeus clients and the cooperating agents. The 

ZMS clients may send two types of requests to the ZMS server via the host man­

ager: a request for global data and a request for information about global data. The 

host manager sends the requests to the server and continues to coordinate the con­
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versation that follows. As soon as the data have been received by the host manager 

from the server or the cooperating agents, the host manager interacts with the 2j\AS 

server to decide whether the data needs to be processed and when the data should be 

made visible to the clients. Whether the data need to be processed depends on the 

application semantics which should be part of the view definition. When the data 

should be made available to the client depends on the transaction management of 

the ZMS server. When the data are ready, the host manager puts the data in the 

virtual memory space of the client processes. 

The cooperating agent serves as an agent between the ZMS clients and one or 

more DBMSs. The request for data received by the cooperating agent is dispatched 

from the server. The cooperating agent interacts with the DBMSs to retrieve the 

data, processes the data if necessary, sends the data to the requesting host manager, 

and notifies the server that the request has been processed. 

Template and Portal. We have generalized the notions of templates and 

portals developed in the OR Interface [90]. In the ZM.S, a template models a generic 

interface that can be used to automate the generation of the DBMS access routines, 

i.e. portals, based upon a user-defined Zeus view. The result is a customized inter­

face to the DBMS tailored to the requirements of a specific application. Templates 

and portals are modeled as instances of Template and Portal which are subclasses of 

DBMSAgent. 

Architecture. Host managers, cooperating agents, and their associated 

managers are distributed in a network of hosts. Instances of ClientMgr, ServerMgr, 

and CoopAgentMgr run on the same host as that of the HostManager object. The 
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ClientMemoryMgr object runs on the same host where the Z M S  client is running. 

Since participating DBMSs may not have the capability of running as a network 

server, we use ParticipatingDBMS to model the way the participating DBMSs are 

expected to work with the ZMS. A ParticipatingDBMS object runs on the same 

host as that of a participating DBMS and serves as an intermediate network server 

between the ZM.S and the DBMS. A database access routine, i.e., a portal, does 

not have to run on the same host as that of the accessed DBMS. Portals inherit 

from DBMSAgent the communication protocol to interact with a ParticipatingDBMS 

object. 

4.2.6 Specification 

We use CORBA IDL to specify the high-level design of the Z M S .  A listing of 

this specification in the form of IDL source files is included in Appendix B. Along with 

each IDL source file, we provide descriptions on the behavioral semantics associated 

with the interface defined in the IDL source file. 

4.3 Implementation Issues 

During the course of experimenting with developing part of the Z M S ,  we have 

uncovered a number of implementation issues that have contributed to our established 

experience and will help us in the implementation of a full-blown multidatabase 

system. Our target computing environment for implementing the ZMS is composed 

of a local area network located in the ISLÎ Computer Science Department, an AS/400 

and a large-scale, campus-wide distributed computing environment called Project 

Vincent. The backbone of the campus network is Digital Equipment Corporation's 
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implementation of the Fiber Distributed Data Interface (FDDI) that provides a data 

transmission speed of 100 megabits per second. Multiprotocol routers and Ethernet 

bridges were used to connect Ethernet segments of campus buildings to the FDDI 

backbone. Campus connection to NSFnet has T1 speed (1.5 megabits per second). 

Several high-performance workstations are directly attached to the FDDI nodes. 

The major network services in Project Vincent were originally ported from 

Project Athena [30] and have undergone continuing revision since then. There are 

four basic types of servers under Project Vincent; Read-Only, System Management 

Services, Kerberos, and Full-Service servers. The Read-Only server maintains a repos­

itory for operating system softwares and other shared softwares. The Kerberos server 

provides authentication services to the entire network. The System Management 

Services servers provide management facilities for the entire distributed system. The 

Full-Service servers provide most of the remaining user-accessible services including 

distributed file storage (NFS and APS), Zephyr message delivery, Ilesiod name ser­

vice, and so on. NCS RPC [68] is supported in Project Vincent. The Computer 

Science local area network runs NFS and has TCP/IP connections to Project Vin­

cent. The QTCP subsystem on the AS/400 provides TCP/IP connections to both 

Project Vincent and the Computer Science local area network. 

Based on the above computing environment, a number of implementation issues 

have been explored in Project Zeus. We view this experience as valuable guidance 

for the next phase of Project Zeus; i.e., the completion of a working multidatabase 

system based on the ZVM and the methodology that we described earlier in this 

Chapter. 
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4.3.1 Network Servers 

There are a number of issues related to the implementation of network servers. 

The first issue is the choice of a communication suite that provides naming, address­

ing, and the services of a transport protocol. We are also concerned about how the 

local and remote interprocess communications (IPCs) offered by the host operating 

system interface are integrated with the communication suite. To support the no­

tion of the ZM.S thread, we need advanced process management fcailities from the 

host operating system. Other issues like security, the transfer of large objects and 

the external data representation are all important in the implementation of network 

servers. 

4.3.2 The AS/400 and Project Zeus 

By choosing the AS/400 as one of our prototyping platforms, we are able to in­

crease the heterogeneity of the computing environment. There is a number of critical 

aspects that distinguishes the AS/400 from UNIX-based platforms. In the context 

of machine architecture and operating system, the layered organization of the func­

tion in the AS/400 consists of five layers. The bottom three layers (the hardware, 

the horizontal licensed internal code (HLIC) and the vertical licensed internal code 

(VLIC)) implement the machine interface (MI). The next layer is the operating sys­

tem and the top layer consists of high level language compilers and applications. In 

the context of database support, the database component of the AS/400 is fully in­

tegrated. Database functions are implemented in the operating system and the MI. 

As a result, most of the function that is supported by the database can be accessed 

through the use of the systems command language (CL). One peculiar characteristic 
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of the AS/400 is the notion of single-level store and object paradigm. Everything 

is stored on the AS/400 as an object. Objects are encapsulated through the use of 

the abstract data paradigm. The methods defined for system objects are defined by 

the MI instruction set. The code which implements all of these methods is contained 

within the VLIC. The ZVS design separates all these AS/400-specific features from 

system implementations through portable interface definitions. This separation will 

ensure a smooth transition to IBM's implementation of the CORBA-compliant ORB 

on the AS/400 [130] as it becomes available. 

4.3.3 Programming with CORBA 

Partly due to the fact that the implementation of commercial object request 

brokers is still at its infancy, the reported experience with CORBA has been scarce, 

especially for complex and large-scale software systems. The adoption of CORBA 

in Project Zeus has helped us simplify the design of the ZMS. After gaining the 

p r o g r a m m i n g  e x p e r i e n c e  w i t h  C O R B A  a n d  e x p e r i m e n t i n g  w i t h  a l t e r n a t i v e  Z M S  

designs, we expect that the bulk of the system source will be significantly smaller 

compared to the same design developed without CORBA. 

Modeling and Abstraction. Part 1 of Figure 4.12 shows the three de­

velopment stages separated by dotted lines. The system design started out with an 

application object model. We use object-oriented state machines (OOSMs) to cap­

ture the reactiveness of the ZVS. The behavioral semantics is described in formal 

specifications. As soon as the system is well-defined, we started to code our design in 

the IDL files. Part 2 of Figure 4.12 lists a sample IDL source file. The IDL source files 
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dOC<"=^-'=P°" 
^manual 

symbolic link 
symbolic link 
symbolic link 

skeleton 

template 

ZVSagoni 

ZVSCUani 

Formal specifications 
Obiect-OrientedStaîe Machirus 

© II DDL source file: rfs.idl 

^include <ZVS.idl> 

interface FileSystemName; 

interface ZVSFileSyslcm: ZVSObject { 

attribute FileSystemName fs; 

//Other attributes 

(^FileSystemName rfs(in FileSystemName fs); ) 

II Other methods 

(Portable Design) 

Application Object Model 

OOSM& 
Formal Specifications : T 

IDL source files 

Testmg 

(PorUbte Source) 

ZVS executable imagej 

fzvs cliaiu^ f libraries ^ 

& & 
^ZVSserverey ^ramework^ 

•»( Skeletons 

Templates 

^ IDL Compiler 

(CompalibilUy) c++ 

// Expanded template file: rfs.C < < — 

^include "rfs.sh" //Skeleton 

N include "FileSystemName.h" II Stub from FileSystemName interface 

#include <hesiod Ji> 

II Other header files and declarations 

FileSystemName rfs(Environment *ev, FileSystemName *fs) ) 

char *HesiodNarac, *HcsiodNameType; 

diar ••RcraoteFileSystcm; 

RemoteFileSystem =he5_fesolve(HesiodName. HcsiodNameType); 

if (RemoteFileSystem == NULL) { 

err = hes.erroiO; // Handle the error 
) else 

while (*RemoteFileSystem != NULL) 

process(*RemotcFileSystcm++); 

// Return a RemoteFileSystem 

rfs.sh is included in rfs.C. 
rfs.C is expanded to implement declared methods. 

© 

rfs.h is included in client programs that will 

use the interface defined by rfs.idl. 

Figure 4.12: Programming with CORBA. 

only cover the application object model. The interactions among major components 

and behavioral semantics are embedded in the implementation. In other words, the 

full-blown system is made of the IDL source files, ZM.S clients, ZMS servers, and 

expanded templates. 

Development. The IDL source files are then compiled to generate stubs, 

skeletons, and templates for the programming languages that have IDL mappings. 

Each template has the specifications of operations defined in IDL files. The tem])lates 

need to be expanded to include the implementations of the declared operations. 

The templates include most of the system behavioral semantics. Part 3 of Figure 

4.12 lists the expanded template that includes the implementation of the method, 

ZVSFileSystem, defined in rfs.idl. The expanded templates are compiled and archived 
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into class libraries or grouped as frameworks. Now, we can write client programs 

that use the objects and operations defined in IDL files. These client programs are 

linked with libraries to create the ZM.S executable images. The interactions among 

system components are embedded in client programs. 

Testing and Maintenance. Component tests can then be done for each 

client program. In case the design has changed, we can follow the same cycle to update 

the specifications and implementations. As can be seen, the first stage is focused on 

the design. The methodology we used is independent of any programming languages 

or platforms. The entire design is portable. Whether the files generated from the IDL 

compiler are reusable in other CORBA implementations depends on the compatibility 

of IDL compilers. Cautions need to be taken to prevent the IDL specifications and 

templates from getting out of sync. The resulting source configuration is shown in 

part 4 of Figure 4.12. We keep a single copy of the source for the three major UNIX-

based platforms to enhance the portability and reduce the maintenance cost of the 

Z M S .  

4.3.4 Global Architecture 

The implementation of the ZM.S depends on the hosting computing environ­

ment. We want to separate the design of the ZMS from the implementation details 

that depend on the hosting computing environment. How this separation has been 

achieved can be explained through a global ZMS architecture. We group the inter­

face components into a set of CORBA objects called LCE. This allows us to specify 

a portable interface between the ZMS kernel and the hosting computing environ-
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DBMS 
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ORBI 

m 
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ZVS ZVS 

IDL cell-3 DBMS cett-2 DBMS 

Distributed Abstraction 

CUent 

Figure 4.13: A global Z V S  architecture. 

rnent. Now we can picture our design in a more global context. Figure 4.13 shows 

the simplified architecture of the ZMS community. A cell may refer to a campus 

computing environemnt, an organizational computing system, etc. Within a cell, the 

ZMS, LCE, and ORB interact with one another through IDL modules. Between 

the cells, the ORBs communicate with each other through CORBA objects which 

are also defined in IDL modules. In Figure 4.13, the shaded ring shows that the 

ZVS and LCE of all cells may share the same IDL specification to interact with 

each other. This achieves design portability of the ZMS across different computing 

environments. The shaded ellipse shows that the ORBs of all cells share the same 

IDL specification for interactions among ORBs. This achieves specification-level in­

teroperability among ORBs. From clients' point of view, there is a single uniform 

interface for access to multiple DBMSs. This is how the distributed abstraction is 

a c h i e v e d  i n  t h e  Z M S .  
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4.3.5 Performance Optimization 

Like other multidatabase systems, the Z M S  provides an extra layer between 

applications and multiple DBMSs. The implementation and functions of such a soft­

ware layer will impose extra performance cost as opposed to direct coupling of native 

DBMSs. Despite the extensive study of multidatabase issues, there were few guide­

lines to follow in Project Zeus to accommodate performance optimization. Instead, 

we have made a number of decisions as the project progressed. First of all, we de­

cided to separate specifications from implementations. A high-level abstraction can 

be easily optimized by virtue of its declarative nature. Secondly, we chose to support 

different degrees of integration. Partial integration allows the system to scale-up and 

reduces the cost of maintaining the integrated schema. Total integration reduces the 

levels of integration. Finally, we chose to allow different levels of global access. For 

example, a user tries to access a local DBMS through the ZM.S. The ZMS may 

intelligently establish the local connection instead of moving the data between the 

ZM.S server host and user's host. The same kind of intelligence may be used to 

minimize the movement of objects through network communications. 
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CHAPTER 5. FUTURE DIRECTIONS AND SUMMARY 

In this dissertation we described an innovative approach to multidatabase inte­

gration and interoperation. We discuss our future research directions that will expand 

on the work we presented here. We also summarize the major components of our 

solution and conclude with a description of the prospects of Project Zeus. 

5.1 Future Directions 

There are a number of directions for future research to expand on the work 

presented in this dissertation and to explore new applications that fit well with the 

5.1.1 Larch-Style Formal Specifications 

In computer systems development, formal methods provide a way for specify­

ing, developing, and verifying systems. In Project Zeus, we chose to use formal 

methods to specify the ZMS for four reasons. First of all, the ZMS is much more 

complicated than other distributed systems in terms of the system design and im­

plementation. The increasing complexity demands an implementation-independent 

specification tool. Secondly, we used CORBA/IDL to specify the ZMS. Since 

CORBA/IDL is purely declarative, the reactiveness and behavioral semantics are 
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not captured in IDL source files. We need other specification tools to describe the 

reactiveness and behavioral semantics of the ZMS. Thirdly, CORBA/IDL has map­

pings for multiple programming languages. A complex system is likely to be written 

in a number of programming languages. Using a common syntax to describe the 

system improves the maintenance and readability of the system design and imple­

mentation. Finally, formal specifications have a solid mathematical ground and are 

inherently more concise than code. This will simplify the port of the ZMS. An 

adapted Larch-style formal specification language [58], Larch/C ORB A, is being in­

vestigated at Iowa State University. As Project Zeiis enters its next phase, we plan 

to use Larch/CORBA to specify the behavioral semantics of IDL source files as well 

as the reactiveness of the ZM.S components. 

5.1.2 Multidatabase Management Facilities 

We plan to add two major multidatabase management facilities to the Z M S :  

a query interface and a multidatabase transaction management facility. We have 

already started to investigate the use of an object query language as a query interface 

to the ZMS. The functionality of such a multidatabase query interface has three 

major aspects. First of all, the query interface should allow users to query meta data; 

i.e., the information about the data that are available. In our case, such information is 

embedded in views stored in view repositories. Secondly, the query interface should 

allow users to transparently access global data from multiple information sources. 

Thirdly, the query interface must have the capability of dealing with multimedia 

data types which have started to appear in more and more applications. 

The transaction management facility will provide a mechanism to comple-
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ment the notion of ZM.S transactions. We need to work on two major issues. First 

of all, we must detail the representations of the ZM.S transactions and their map­

pings to the query and view constructs. Secondly, we must deal with the semantics 

of multidatabase transactions under the assumptions that participating DBMSs are 

heterogeneous, autonomous, and distributed. 

5.1.3 An Open and Cooperative Framework 

Emerging software technologies, such as object-oriented technology, apply new 

concepts and methodologies to achieve code reuse, tool integration and database 

support for CASE within an object-oriented framework. The concept of component-

oriented software development [82] shifts the development of large-scale distributed 

applications to the composition of plug-compatible software components. Megapro-

gramming can be deemed as an extension to component-oriented software devel­

opment. This extension will promote large-scale, cross-platform, cooperative and 

concurrent programming in distributed computing environments. A discussion of 

research issues in megaprogramming can be found in [112]. Recent advances in 

both data and software engineering exhibit a number of common characteristics; 

i.e., large-scale, wide-area, increased distribution, heterogeneity, cooperation and in-

teroperation. There is also a close tie between these two areas. For example, a 

megaprogram [112] may need integrated access to several information systems. An 

information system may provide management facilities for inter-related software com­

ponents. Since the very beginning of Project Zeus, we have decided to let the design 

of the ZVS remain an open architecture which is extensible and adjustable to chang­

ing technologies. The long-term goal of Project Zeus is geared toward supporting 
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integration and interoperation of resources in a cooperative fashion. Ultimately, the 

ZVS will amalgamate future data and software engineering applications in an open 

and cooperative framework. 

5.2 Summary 

We have presented a view mechanism, the 2 V M ,  that shields underlying het­

erogeneity, complexity and distribution from the developers of future distributed 

applications. This transparency is provided through encapsulation, semantic rela­

tivism, and distributed abstraction modeling. The interaction between Zeus views, 

the abstraction and semantics embedded in Zeus views and the construction of inter­

operable Zeus views provide the basis for the integration and interoperation of global 

services and resources at the application level. The ZVM provides a unique solution 

for solving the modeling problem that we addressed in Chapter 1. The framework-

based design method provides a way to control the complexity of the system design 

and achieve the design criteria. This is our solution to the system design problem. 

At early stages of Project Zeus, we developed the preliminary ZVS design 

based on the specification of a distributed object infrastructure described in CORBA 

[122]. CORBA-compliant object request brokers provide the runtime support for 

the computation model of the ZVS. We also applied our approach to provide a 

solution for multidatabase issues. The integration via Zeus views was successfully 

integrated into our earlier design. Our continued investigation on a number of areas 

has enhanced and solidified our earlier work. We have formalized the ZVA4 to 

provide the basis for describing the mapping and integration of participating DBMSs, 

Zeus views, and applications. An IDL-based specification of the ZMS that details 
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the functionality of the ZM.S server and clients has been completed. We have 

also investigated the issues involved in designing an object query language (OQL) 

for object database management systems (ODBMS). We now have a comprehensive 

survey and analysis of object query languages which have drawn the skeleton of a 

methodology for designing an object query language as an interface to the 2,M.S. 

Project Ztus has exciting prospects. CORBA IDL and Larch/CORBA will 

provide a complete specification tool for documenting our system independent of 

programming languages. The framework-based design method will be integrated 

with a metrics approach to provide an automatable way of filtering out favorable 

design alternatives. This will prove that our design method has the potential of 

simplifying the design of large-scale distributed systems. 



www.manaraa.com

96 

BIBLIOGRAPHY 

[1] Abiteboul, S., and A. Bonner. "Objects and Views," ACM SIGMOD, 1991, pp. 
238-247. 

[2] Agrawal, R., and N. Gehani. "ODE (Object Database and Environment): the 
Language and the Data Model," Object-oriented databases with applications to 
CASE, networks, and VLSI CAD. R. Gupta and E. Horowitz, Ed., Englwood 
Cliffs, NJ : Prentice Hall, 1991, pp. 365-386. 

[3] Ahmed, A., A. Wong, D. Sriram, and R. Logcher. "Object-oriented database 
management systems for engineering: A comparison," Journal of Object-
Oriented Programming, Jun. 1992, pp. 27-44. 

[4] Ahmed, R., P. Smedt, and W. Du. "The Pegasus Heterogeneous Multidatabase 
System," IEEE Computer, Dec. 1991, pp. 19-27. 

[5] Alashqur, A., S. Su, and H. Lam. "OQL: A Query Language for Manipulating 
Object-Oriented Databases," VLDB, 1989, pp. 433-442. 

[6] Andrew, T., C. Harris, and K. Sinkel. "ONTOS: A Persistent Database for C++," 
Object-oriented databases with applications to CASE, networks, and VLSI CAD. 
R. Gupta and E. Horowitz, Ed., Englwood Cliffs, NJ : Prentice Hall, 1991, pp. 
387-406. 

[7] Bancilhon, F. "Object Database Systems: Functional Architecture," Lecture 
Notes in Computer Science, Vol. 742, First JSSST Int'l Symposium, Nov. 1993, 
pp. 163-175. 

[8] Bancilhon, F., C. Delobel, and P. Kanellakis, Ed. Building an Object-Oriented 
Database System: The Story of O2 • Morgan Kaufmann Publishers, San Mateo, 
California, 1992. 



www.manaraa.com

97 

[9] Bancilhon, F., S. Cluet, and C. Delobel. "A Query Language for the O2 Object-
Oriented Database System," Proc. of 2nd Database Programming Language 
Workshop, 1990, pp. 122-138. 

[10] Banerjee, J., W. Kim, and K. Kim. "Queries in Object-Oriented Databases," 
Proc. 4th Int'l Conference on Data Engineering, Feb. 1988. 

[11] Barsalou, T., and D. Gangopadhyay. "M(DM): An Open Framework for Interop-
eration of Multimodel Multidatabase Systems," IEEE Data Engineering, 1992, 
pp. 218-227. 

[12] Barsalou, T., A. M. Keller, N. Siambela and G. Wiederhold. "Updating Re­
lational Databases through Object-Based Views," ACM SIC MOD, 1991, pp. 
248-257, 

[13] Beech, D. "A Foundation for Evolution from Relational to Object Databases," 
Advances in Database Technology - EDTB, Vol. 33, 1988, pp. 251-270. 

[14] Bernstein, P. A. "Middleware: An Architecture for Distributed System Services," 
Technical Report CRL 93/6, Cambridge Research Lab, Digital Equipment Co., 
Mar. 1993. 

[15] Bertino, E., M. Negri, G. Pelagatti, and L. Sbattella. "Object-Oriented Query 
Languages: The Notion and the Issues," IEEE Trans, on Knowledge and Data 
Engineering, Vol. 4, No. 3, Jun. 1992, pp. 223-237. 

[16] Blakeley, J., C. Thompson, and A. Alashqur. "Strawman Reference Model for 
Object Query Languages," Computer Standards & Interfaces, 13, 1991, pp. 185-
199. 

[17] Blakeley, J., W. McKenna, and G. Graefe. "Experiences Building the Open 
OODB Query Optimizer," SIGMOD, 1993, pp. 210-216. 

[18] Blakeley, J. "ZQL[C++]: Extending the C++ Language with an Object Query 
Capability," Database Challenges in the 1990's, Won Kim (Ed.), ACM Press, 
Addison-Wesley, Menlo Park, CA, 1993. 

[19] Bloom, T., and S. Zdonik. "Issues in the Design of Object-Oriented Database 
Programming Languages," Object-Oriented Programming Systems, Languages 
and Applications, OOPSLA'87, pp. 441-451. 

[20] Bretl, R., et. al. "The GemStone Data Management System," Object-Oriented 
Concepts, Databases, and Applications. Kim, W., and F. Lochovsky, (Ed.) Fron­
tier Series, ACM Press, Addison Wesley, Menlo Park, CA, 1989, pp. 283-308. 



www.manaraa.com

98 

Bright, M. W., and A. R. Hurson. "Multidatabase Systems: An Advanced Con­
cept in Handling Distributed Data," Advances in Computers. Vol. 32, 1991, pp. 
149-201. 

Brodie, M. "On the Development of Data Models," On Conceptual Modeling, 
Springer Verlag, New York City, 1984. 

Brodie, M., and S. Ceri. "On Intelligent and Cooperative Information Systems," 
Int'l Journal of Intelligent and Cooperative Information Systems, Sep. 1992, pp. 
121-131. 

Bukhres 0., A. Elmagarmid, and J. Mullen. "Object-Oriented Multidatabases: 
Systems and Research Overview," Int'l Conference in Knowledge Management, 
1992, pp. 27-34. 

Bukhres, 0., J. Chen, A. Elmagarmid, X. Liu, and J. Mullen. "InterBase: A 
Multidatabase Prototype System," SIGMOD, 1993, pp. 534-539. 

Carey, M., et al. "The Architecture of the EXODUS Extensible DBMS," Proc. 
Int'l Workshop on Object-Oriented Database Systems, Pacific Grove, Sep. 1986. 

Carey, M., and D. DeWitt. "An Overview of the EXODUS Project," Database 
Engineering, Jun. 1987, pp. 110-129. 

Carey, M., D. Dewitt, and S. Vandenberg. "A Data Model and Query Language 
for EXODUS," SIGMOD, 1988, pp. 413-423. 

Cattell, R., Ed. The Object Database Standard: ODMG-93, Morgan Kaufmann, 
San Mateo, California, 1993. 

Champine, G. A., D. E. Geer, Jr., and W. N. Ruh. "Project Athena as a Dis­
tributed Computer System," IEEE Computer, Sep. 1990, pp. 40-51. 

Chan, D., D. Harper, and P. Trinder. "Object-Oriented Query Languages: Data 
Model Issues, Survey, Comparison and Analysis," Department Research Report, 
DB-1992-1, Dept. of Computing Science, Univ. of Glasgow, Nov. 1992. 

Chen, Q., and M. Shan. "Abstract View Objects for Multiple OODB Integra­
tion," Lecture Notes in Computer Science, No. 742, 1993, pp. 237-250. 

Chen, I. A., and D. McLeod. "Derived Data Update in Semantic Databases," 
Very Large Data Bases, 1989, pp. 225-235. 



www.manaraa.com

99 

Chung, C. "Dataplex: An Access to Heterogeneous Distributed Databases," 
Communications of the ACM, Vol. 33, No. 1, Jan. 1990, pp. 70-80. 

Cluet, S. "RELOOP, an Algebra Based Query Language for an Object-Oriented 
Database System," Data & Knowledge Engineering, 5 (1990), pp. 333-352. 

Codd, E. "A Relational Model for Large Shared Data Banks," Communications 
of ACM, 13(6), 1970, pp. 377-387. 

Collet, C., M. Huhns, and W. Shen. "Resource Integration Using a Large Knowl­
edge Base in Carnot," IEEE Computer, Dec. 1991, pp. 55-62. 

Czejdo, B., and M. C. Taylor. "Integration of Information Systems Using an 
Object-Oriented Approach," The Computer Journal, Vol. 35, No. 5, 1992, pp. 
501-513. 

Dar, S., N. Gehani, and H. Jagadish. "CQL++: A SQL for the Ode Object-
Oriented Database," Proc. of Int'l Conf. on Extending Database Technology, 
Vienna, Austria, Mar. 1992, pp. 111-121. 

Dayal, U. "Multibcise - integrating heterogeneous distributed database systems," 
Proc. of AFIPS, 1981, pp. 487-499. 

Deen, S., R. Amin, and M. Taylor. "Data Integration in Distributed Databases," 
IEEE Transactions on Software Eng., Vol. SE-13, No. 7, Jul. 1987, pp. 860-864. 

Fichman, R., and C. Kemerer. "Object-Oriented and Conventional Analysis and 
Design Methodologies," IEEE Computer, Oct. 1992, pp. 22-39. 

Finkelstein, R. "Breaking the Mold," Database Programming & Design, Feb. 
1993, pp. 39-43. 

Fishman, D., et al. "Overview of the Iris DBMS," Object-Oriented Concepts, 
Databases, and Applications. Kim, W., and F. Lochovsky, (Ed.) Frontier Series, 
ACM Press, Addison Wesley, Menlo Park, CA, 1989, pp. 219-250. 

Fong, E., W. Kent, K. Moore and C. Thompson. X3/SPARC/DBSSG/00DBTG 
Final Report, American National Standards Institute (ANSI), Aug. 1991. 

Gallagher, L. "Object SQL: Language Extensions for Object Data Manage­
ment," Int'l Conference on Information and Knowledge Management, 1992, pp. 
17-26. 



www.manaraa.com

100 

Gardarin, G., and P. Valduriez. "ESQL2: An Object-Oriented SQL with F-Logic 
Semantics," IEEE Data Engineering, 1992, pp. 320-327. 

Garlan, D. "Extending IDL to Support Concurrent Views," ACM SIGPLAN, 
Not. 22, 11, 1986, pp. 95-110. 

Geppert, A., et al. "The NO^ Data Model," Technical Report 93.09, Computer 
Science Department, University of Zurich, Switzerland, Apr. 1993. 

Gien, M. "Next Generation Operating Systems Architecture," Lecture Notes in 
Computer Science, No. 563, 1991. 

Gupta, A., ed. "Integration of Information Systems: Bridging Heterogeneous 
Databases," IEEE Press, New York City, 1989. 

Harris, C., and J. Duhl. "Object SQL," Object-oriented databases with appli­
cations to CASE, networks, and VLSI CAD. R. Gupta and E. Horowitz, Ed., 
Englwood Cliffs, NJ : Prentice Hall, 1991, pp. 199-215. 

Heiler, S., and S. Zdonik. "Object Views: Extending the Vision," IEEE Data 
Engineering, 1990, pp. 86-93. 

Heimbigner, D., and D. McLeod. "A Federated Architecture for Information 
Management," ACM Trans, on Office Information Systems, Jul. 1985, Vol. 3, 
No. 3. 

Hornick, M. F., J. D. Morrison and F. Nayeri. "Integrating Heterogeneous, Au­
tonomous, Distributed Applications Using the DOM Prototype," TR-0174-12-
91-165, GTE Laboratories Incorporated, Waltham, MA, Dec. 1991. 

Horowitz, E., and Q. Wan. "An Overview of Existing Object-Oriented Database 
Systems," Object-oriented databases with applications to CASE, networks, and 
VLSI CAD. R. Gupta and E. Horowitz, Ed., Englwood Cliffs, NJ : Prentice Hall, 
1991, pp. 101-116. 

Hurson, A., M. Bright, and S. Pakzad. Multidatabase Systems: An Advanced 
Solution for Global Information Sharing. IEEE Computer Society Press, Los 
Alamitos, CA, 1994. 

Guttag, J., J. Horning, S. Garland, K. Jones, A. Modet, and J. Wing. Larch: 
Languages and Tools for Formal Specification, Springer-Verlag, New York City, 
1993. 

[59 Jarke, M., Ed. ConceptBase VS.2 User Manual. Aachen, 1993. 



www.manaraa.com

101 

Kaul, M., K. Drosten and E. J. Neuhold. "ViewSystem; Integrating Heteroge­
neous Information Bases by Object-Oriented Views," IEEE Data Engineering, 
1990, pp. 2-10. 

Keller, A., J. Richard, and S. Agarwal. "Persistence Software: Bridging Object-
Oriented Programming and Relational Databases," SIGMOD, 1993, pp. 523-
528. 

Kent, W. "Important Features of Iris OSQL," Computer Standards & Interfaces, 
13(1991), pp. 201-206. 

Kifer, M., G. Lausen, and J. Wu. "Logical Foundations of Object-Oriented and 
Frame-Based Languages," Technical Report 90/14, Dept. of Computer Science, 
SUNY at Stony Brook, Aug. 1990. 

Kifer, M., W. Kim, and Y. Sagiv. "Querying Object-Oriented Databases," SIG­
MOD, 1992, pp. 393-402. 

Kim, W. "Features of the ORION Object-Oriented Database," Object-Oriented 
Concepts, Databases, and Applications. Kim, W., and F. Lochovsky, (Ed.) Fron­
tier Series, ACM Press, Addison Wesley, Menlo Park, CA, 1989, pp. 251-282. 

Kim, W. "A Model of Queries for Object-Oriented Databases," VLDB, 1989, 
pp. 423-432. 

Kim, W. Introduction to Object-Oriented Databases, Computer Systems Series, 
the MIT Press, Cambridge, MA. 

Kong, M. Network Computing System Reference Manual, Prentice Hall, Engle-
wood Cliffs, New Jersey, 1990. 

Konstantcis, D. "Object-Oriented Interoperability," Lecture Notes in Computer 
Science, No. 707, ECOOP, 1993, pp. 80-102. 

Lamb, C., G. Landis, J. Orenstein, and D. Sakahara. "The ObjectStore Database 
System," Communications of the ACM, Oct. 1991, pp. 50-63. 

Little, T., and A. Ghafoor. "Spatio-Temporal Composition of Distributed Mul­
timedia Objects for Value-Added Networks," IEEE Computer, Oct. 1991, pp. 
42-50. 

Loomis, M. "Object Database Semantics," Journal of Object-Oriented Program­
ming, Jul.-Aug. 1993, pp. 26-33. 



www.manaraa.com

102 

Maier, D. "Development of an Object-Oriented DBMS," OOPSLA, 1986, pp. 
472-482. 

Manola, F. "An Evaluation of Object-Oriented DBMS Development," TR-0066-
10-89-165, GTE Laboratories Inc., Waltham, MA, 1989. 

Manola, F. "Object Data Language Facilities for Multimedia Data Types," TR-
0169-12-91-165, GTE Laboratories Inc., Waltham, MA, 1991. 

McCarthy, J. "Metadata Management for Large Statistical Database," Very 
Large Data Bases, 1982, pp. 470-502. 

Mitchell, G., S. Zdonic, and U. Dayal. "An Architecture for Query Process­
ing in Persistent Object Stores," CS-91-38, Dept. of Computer Science, Brown 
University, June 1991. 

Mitchell, G. "Extensible Query Processing in an Object-Oriented Database," 
CS-93-16, Dept. of Computer Science, Brown University, May 1993. 

Monk, S. "The CLOSQL Query Language," Technical report No. SE-91-15, 
Computing Dept., Lancaster University, Lancaster, UK. 1991. 

Mullen, G. "Supporting Queries in the 0-Raid Object-Oriented Database Sys­
tem," Proc. of the Int'l Computer Software and Applications Conference, Oct. 
1990, pp. 245-250. 

Nicol, J., C. Wilkes, and F. Manola. "Object Orientation in Heterogeneous Dis­
tributed Computing Systems," IEEE Computer, Jun. 1993, pp. 57-67. 

Nierstrasz, 0., S. Gibbs and D. Tsichritzis. "Component Oriented Software De­
velopment," Communications of the ACM, Sep. 1992, pp. 160-165. 

Orenstein, J., S. Haradhvala, B. Margulies, and D. Sakahara. "Query Processing 
in the ObjectStore Database System," ACM SIGMOD, 1992, pp. 403-412. 

Ozsu, M., and D. Straube. "Issues in Query Model Design in Object-Oriented 
Database Systems," Computer Standards & Interfaces, 13, 1991, pp. 157-167. 

Peters, R. J., M. T. Ozsu and D. S:5afron. "TIGUKAT: An Object Model for 
Query and View Support in Object Database Systems," TR 92-14, U. of Alberta, 
Oct. 1992. 

Peters, R., A. Lipka, M. Ozsu, and D. Szafron. "The Query Model and Query 
Language of Tigukat," TR 93-01, Dept. of Computing Science, Univ. of Alberta, 
Jan. 1993. 



www.manaraa.com

103 

Premerlani, W. J., M. R. Blaha, J. E. Rumbaugh and T. A. Varwig. "An Object-
Oriented Relational Database," Communications of the ACM, pages 99-109, 
Nov. 1990. 

Pu, C. "Superdatabases for Composition of Heterogeneous Databases," IEEE 
Data Engineering, 1988, pp. 548-555. 

Rigney, T. "New SQL Database Supports Multimedia," Communications Week, 
Nov. 22, 1993, pp. 14. 

Roberts, J., and L. Miller. "A Prototype of the Generation of Views for an 
Object-Relational Interface," ISCA, 1993, pp. 138-141. 

Rosenberry, W., D. Kenney and G. Fisher. Understanding DCE, O'Reilly & 
Associates, Inc., Sebastopol, CA, 1992. 

Saltor, F., and M. Garcia-Solaco. "Suitability of Data Models as Canonical Mod­
els for Federated Databases," SIGMOD RECORD, Special Issue, Vol. 20, No. 4, 
Dec. 1991, pp. 44-48. 

Sarkar, M., and S. Reiss. "A Data Model and a Query Language for Object-
Oriented Databases," CS-92-57, Dept. of Computer Science, Brown University, 
Dec. 1992. 

Scholl, M. H., C. Laasch and M. Tresch. "Updatable Views in Object-Oriented 
Databases," Deductive and Object-Oriented Databases (DOOD), 1991, pp. 189-
207. 

Shaw, G., and S. Zdonik. "A Query Algebra for Object-Oriented Databases," 
CS-89-19, Dept. of Computer Science, Brown University, March 1989. 

Sheth, A. "Semantic Issues in Multidatabase Systems," SIGMOD RECORD, 
Special Issue, Vol. 20, No. 4, Dec. 1991. 

Sheth, A., and , L. Kalinichenko. "Information Modeling in Multidatabase Sys­
tems: Beyond Data Modeling," Int'l Conference in Knowledge Management, 
1992, pp. 8-16. 

Sheth, A. "Federated Database Systems for Managing Distributed, Heteroge­
neous, and Autonomous Databases," ACM Computing Survey, 1990, pp. 79-104. 

Shilling, J. J., and P. F. Sweeney. "Three Steps to Views: Extending the Object-
Oriented Paradigm," OOPSLA, 1989, pp. 353-361. 



www.manaraa.com

104 

100] Silberschantz, A., M. Stonebraker, and J. Ullman. "Database Systems: 
Achievements and Opportunities," Communications of the ACM, Vol. 34, No. 
10, Oct. 1991, pp. 110-120. 

101] Stonebraker, M. "The Design and Implementation of INGRES," ACM Trans, 
on Database Systems, Sep. 1976, pp. 210-228. 

102] Stonebraker, M., and G. Kemnitz. "The POSTGRES Next-Generation 
Database Management System," Communications of the ACM, 1991, Vol. 34, 
No. 10, pp. 78-92. 

103] Straube, D. "Queries and Query Processing in Object-Oriented Database Sys­
tems," Ph.D. Thesis, TR 90-33, Dept. of Computing, Univ. of Alberta, Dec. 
1990. 

104] Sudha, R. "Heterogeneous Distributed Database Systems," IEEE Computer, 
Dec. 1991, pp. 7-9. 

105] Su, S., S. Fang, and H. Lam. "An Object-Oriented Rule-Based Approach 
to Data Model and Schema Integration," Technical Report (TR-93-12), U. of 
Florida, 1993. 

106] Ty, Frederick. "G-OQL: Graphics Interface to the Object-Oriented Query Lan­
guage OQL," Master Thesis, U. of Florida, 1988. 

107] Vandenberg, S. "Algebras for Object-Oriented Query Languages," TR 1161, 
Dept. of Computer Science, Univ. of Wisconsin, 1993. 

108] Veijalainen, J., and R. Popescu-Zeletin. "Multidatabase Systems in ISO/OSI 
Environment," Standards in Information Technology and Industrial Control, 
1988, pp. 83-97. 

109] Weinreb D., et al. "An Object-Oriented Database System to Support an Inte­
grated Programming Environment," Object-oriented databases with applications 
to CASE, networks, and VLSI CAD. R. Gupta and E. Horowitz, Ed., Englwood 
Cliffs, NJ : Prentice Hall, 1991, pp. 117-129. 

110] Weiser, S., and F. Lochovsky. "0Z+: An Object-Oriented Database System," 
Object-Oriented Concepts, Databases, and Applications. Kim, W., and F. Lo­
chovsky, (Ed.) Frontier Series, ACM Press, Addison Wesley, Menlo Park, CA, 
1989, pp. 309-340. 



www.manaraa.com

105 

111] Wells, D. L., J. A. Blakeley and C. W. Thompson. "Architecture of an Open 
Object-Oriented Database Management System," IEEE Computer, Oct. 1992, 
pp. 74-82. 

112] Wiederhold, G., P. Wegner and S. Ceri. "Toward Megaprogramming," Com­
munications of the ACM, Nov. 1992, pp. 89-99. 

113] Wiederhold, G. "Views, Objects, and Databases," IEEE Computer, Dec. 1986, 
pp. 37-44. 

114] Wiener, J., and Y. loannidis, "A Moose and a Fox Can Aid Scientists with 
Data Management Problems," TR 1182, Dept. of Computer Science, Univ. of 
Wisconsin, 1993. 

115] Wileden, J., A. Wolf, W. Rosenblatt, and P. Tarr. "Specification-Level Inter­
operability," Communications of the ACM, May 1991, pp. 73-87. 

116] Wirfs-Brock, R., and R. Johnson. "Surveying Current Research in Object-
Oriented Design," Communications of the ACM, Sep. 1990, pp. 104-124. 

117] Yen, C., and L. Miller. "An Extensible View System for Multidatabase Integra­
tion and Interoperation," to appear in the Journal of Integrated Computer-Aided 
Engineering, Nov. 1994. 

118] Yen, C. H., and L. L. Miller. "The Design and Implementation of the Zeus 
View System," Proc. of the 27th Hawaii Int 'I Conference on System Sciences, 
Vol. II, 1994, pp. 206-215. 

119] Zicari, R. "The SOL Object-Oriented Database Language," Lecture Notes in 
Computer Science, No. 593, May 1992, pp. 105-127. 

120] Open Systems Handbook: A Guide to Building Open Systems, Cambridge Re­
search Laboratories, Digital Equipment Corporation, 1991. 

121] Leveraging Object-Oriented Frameworks. White Paper, Taligent Inc., San Jose, 
CA, 1993. 

122] The Common Object Request Broker: Architecture and Specification, Object 
Management Group, OMG Document 91.12.1, Austin, Texas, Dec. 1991. 

123] OMG Architecture Guide Chapter 4' The OMG Object Model, Object Manage­
ment Group, Austin, Texas, May 1992. 



www.manaraa.com

106 

124] "Interoperability: Communications Week's White Papers on Managing the En­
terprise," Supplement to Communications Week^ Oct. 12, 1992. 

125] Information Processing Systems, Open Systems Interconnection, Remote 
Database Access - Part 1: Generic Model, Service and Protocol, ISO-IEC-9579-
1-DIS, Jun. 1991. 

126] Information Processing Systems, Open Systems Interconnection, Remote 
Database Access - Part 2: SQL Specialization, ISO-IEC-9579-2-DIS, Jun. 1991. 

127] UniSQL Multidatabase System. Data Sheets, UniSQL, Austin, Texas, 1992. 

128] "A New Direction in DBMS," An interview with Dr. Michael Stonebraker, 
DBMS Client/Server Computing, Feb. 1994, pp. 50-60. 

129] Object Management Architecture Guide, Revision 1.0, OMG TC Document 
90.9.1, Austin, Texas. 

130] The SOM Toolkit Useras Guide, Release 2.0, IBM Corporation, Austin, Texas. 

131] ANSA ORB Interoperability. Object Management Group, OMG Document 93-
5-9, Austin, Texas, May 1993. 

132] Special Issue on Next-Generation Database Management Systems, Communi­
cations of the ACM., 34(10), 1991. 

133] "ITASCA Distributed ODBMS," Itasca Systems Inc., Minneapolis, Minnesota, 
May 1993. 

134] OpenODB from Hewlett-Packard. Technical Data, Hewlett-Packard Company, 
Palo Alto, CA, 1992. 

135] "Object Technology at Hewlett-Packard," Object-Oriented Strategies, Vol 3, 
No. 4, Paul Harmon (Ed.), Cambridge, MA, 1993. 

136] "Object-Oriented Database Management System Products," Object-Oriented 
Strategies, Vol. 2, No. 2, Paul Harmon (Ed.), 1992. 

137] ObjectStore Technical Overview. Release 2.0, Object Design Inc., Burlington, 
MA, Jul. 1992. 

138] ObjectStore Product Profile. Object Design Inc., Burlington, MA, 1993. 

139] "ONTOS Object Database and Tools for Rapid Object Application Develop­
ment," ONTOS Inc., San Jose, CA, 1993. 



www.manaraa.com

107 

[140] Objectivity: Data Sheet. Objectivity Inc., Menlo Park, CA, 1993. 

[141] O2 Technology: Product Profile. O2 Technology, Paris, France, 1993. 

[142] "GEMSTONE: The High-Performance Object Database Management System," 
Servio Corporation, San Jose, CA, 1993. 

[143] UniSQL News Release. UniSQL Inc., Austin, Texas, 1993. 

[144] Versant Object SQL. Versant Object Technology, Menlo Park, CA, 1993. 

[145] Object-oriented databases with applications to CASE, networks, and VLSI 
CAD. R. Gupta and E. Horowitz, Ed., Englwood Cliffs, NJ : Prentice Hall, 
1991, pp. 365-386. 

[146] ISO/IEC SQL Revision. ISO-ANSI Working Draft Database Language SQL 
(SQL3), Jim Melton, Ed., Document ISO/IEC JTC1/SC21 N6931, American 
National Standards Institute, New York, July 1992. 



www.manaraa.com

108 

APPENDIX A. OBJECT QUERY LANGUAGES 

A.l Introduction 

The advances in object database management systems (ODBMSs) have picked 

up speed in recent years due to the intensive research[132], the emerging products 

and prototypes[74, 141], and the large number of successful experiences with the 

applications built on 0DBMSs[3, 145]. To compete against the relational database 

management systems (RDBMSs), ODBMSs must enhance the query language sup­

port which is one of the major strengths of RDBMSs. Recent advances in the devel­

opment of ODBMSs have started to address the importance of query languages['29]. 

Major ODBMS vendors are striving to implement object query languages (OQLs) 

that not only aim at the essential needs of the query facility, but also conform to 

standards for interoperability. Despite these advances and the fact that the stan­

dardization of OQLs is under way[29, 46], lack of an extensive characterization and 

a taxonomy of OQLs has clouded the role and meaning of an OQL in an ODBMS. 

This has weakened the acceptance of OQLs in the user community. Eventually, the 

advances of both OQLs and ODBMSs may be slowed down due to the confusion. 

In this Appendix, we summarize our survey and analysis of existing OQLs by 

characterizing their features. For the remainder of this section, we describe the 

motivation of this survey. Section A.2 looks at the basics of OQLs. Section A.3 
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describes how we characterize OQLs. The survey and analysis of existing OQLs are 

provided in Sections A.4 and A.5. Section A.6 covers the current standardization 

activities of OQLs. 

Motivation. Most ODBMSs have interfaces built for one or more pro­

gramming languages. As opposed to the declarativeness of query languages, program­

ming languages are computationally-complete. However, programming languages 

lack the simplicity of query languages. Therefore, there is a need for a way of ma­

nipulating data from ODBMSs without having to write a program. An object query 

language or an ad hoc query facility are designated for this kind of functionality which 

indicates the irreplaceable role of an OQL in an ODBMS. We want to clearly iden­

tify what an OQL is, what it is used for, how it is used, how it should be designed, 

and so on. To answer all these questions, we must understand the characteristics 

of OQLs in general and the features of existing OQLs in particular. The nature 

of OQLs is complicated by a multitude of existing approaches to OQLs as well as 

the complexity of the hosting ODBMs. Future advances and developments of OQLs 

would have guidance toward success with a taxonomy for OQLs. To create such a 

taxonomy, we start with the characterization of an object query language along four 

dimensions: foundation, functionality, language environment, and language features. 

Within these dimensions, we explore the characteristics and issues of OQLs indepen­

dent of existing OQLs. This leads to a common framework for characterizing existing 

OQLs. After surveying and analyzing existing OQLs, this common characterization 

framework can be refined to a taxonomy for OQLs. 
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A,2 Preliminaries 

The functionality of a database language is to provide features for defining, 

retrieving and manipulating data. In an ODBMS, a database language often appears 

as an extended programming language plus some querying constructs. For example, 

an object-oriented programming language with persistence or an embedded object 

query language can be used as a database language. The querying constructs may 

be provided as a query language or simply as a programming interface. As far as 

the user interface is concerned, there are a number of alternatives. For example, the 

graphical user interface or graphical query-by-example. However, a query language is 

thought by many to be an essential feature of an ODBMS. In this survey, we focus on 

the query language part of an ODBMS. For the remainder of this section, we briefly 

overview what an OQL is, what OQL design issues are, and some of the terminology 

commonly used in OQLs and ODBMSs. 

A.2.1 Semantics of Object Databases &: Object Query Languages 

To understand what an object query language is, we must know its meaning; 

i.e., semantics, and that of its hosting ODBMS. Object database semantics have been 

addressed in [72]. The semantics of an object database and an object query language 

are based on an object model. The basic semantic elements of an object model include 

the object, the type hierarchy that describes the relationships of objects, and the state 

and behavior of objects. An application's abstract object model is developed based 

on these semantic elements of the underlying object database. The implementation 

of such an abstract object model may be bound to a specific programming language 

and/or a query facility. 
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What an OQL is. An OQL provides an implementation-independent 

way of expressing queries against an ODBMS. The query may be intended to retrieve 

or manipulate data stored in an ODBMS. The syntax and semantics of an OQL fully 

specify how the queries should be handled, or how the result should be presented. An 

OQL is also independent of applications although the expressiveness of the OQL must 

accommodate the requirements of applications. A number of OQL semantic issues 

remain unsettled. This is why existing OQLs have several fundamental differences. 

For example, a collection of objects may be queried by users. Should these objects 

have the same type? If we allow a query to inquire a hierarchy of classes, what would 

be the type extents? Should users be allowed to explicitly formulate the type extent? 

Another example is the representation of objects in OQLs. There are two common 

approaches: value-based, and reference-based. Both approaches have implications on 

the use, design, and implementation of OQLs. Finally, should we allow a query to 

create objects that have new types? 

Why we need an OQL. An OQL is required in an ODBMS for a number 

of reasons. First of all, an OQL allows queries to be composed declaratively. Queries 

may be used for associative search which is important in many application domains. 

Secondly, the declarativeness of queries makes the optimization easier. Thirdly, an 

OQL may allow an ODBMS to be used in both business and engineering applications. 

Finally, a programming language independent OQL is easier to standardize, and to 

serve as a DBMS interoperability tool. 

OQL vs. Programming Language. OQLs and programming languages 

may have different object models. The functionality of OQLs and programming 
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languages complement each other nicely since there are different uses that require 

different ways to access the ODBMS. Some of the uses require features that are more 

easily incorporated in an object query language; e.g., associative search. Some of 

the uses may require features that are more appropriately coded in a programming 

language; e.g. complex procedures. The approach of extending the programming 

language to provide query facilities has its own limitations. Such an approach does not 

allow OQLs and programming languages to co-exist in ODBMSs and play different 

roles. There are a number of salient features of OQLs that separate them from 

programming languages: 

1. The syntax of an object query language is declarative and easier to use in terms 

of getting the requested data. The semantics of an object query language can 

be derived from the underlying object database semantics. A programming 

language requires extensions to adjust to the object database semantics. Using 

a program to access an ODBMS requires the access details to be described in 

the program. 

2. An object query language can describe abstract semantics independent of im­

plementations. This implies multi-lingual support, application portability and 

interoperability. 

3. Many existing object query languages have been integrated with programming 

languages. A declarative object query language may converge with program­

ming languages by including specifications of operations. For the users of 

ODBMSs, this means a flexible and high-level combination of system and user 

interface facilities. 
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A.2.2 Design Issues 

Based on the OQL semantics we discussed in the previous section, we can now 

explore the issues of designing such a query facility. We describe the OQL design 

issues along four dimensions: foundation, functionality, language environment, and 

language features. 

Foundation. The foundation of an OQL includes an object model and a 

query model. It is common for an ODBMS to have an object model. Existing OQLs 

may or may not rely on the object model of the hosting ODBMS. Having the same 

object model for both the OQL and the ODBMS simplify the design of the OQL. 

However, in this case, the object model must be capable of supporting both the OQL 

and the ODBMS. A formal query model provides the basis for query optimization 

although most existing OQLs were not built upon a formal query model. With a 

formal query model, the formal semantics of an OQL can easily be defined. 

Functionality. The functionality of an OQL depends on who uses it, what 

it is used for, and how it is used. Unlike an application program interface, a query 

facility should be easy to use. Most OQLs provide declarative and associative access 

to ODBMSs. Some existing OQLs are embedded in or integrated with programming 

languages to support complex queries that may involve computations. A casual user 

may choose to use an ad hoc query language to compose retrieval-oriented queries. An 

application programmer may prefer to use an OQL with a programming language. 

The query result and how it is presented are also important issues related to the 

functionality of an OQL. 
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Language Environment. The language environment describes how an 

OQL is provided, how it interacts or is integrated with other ODBMS components. 

An OQL may be separated from the object definition language (ODL). There may 

even be another language for describing the behavior of methods. Both the ODL and 

OQL can be made programming language independent. There might exist different 

degrees of integration and interactions between OQLs and programming languages. 

If the OQL is closely integrated with a programming language, some ODBMS-specific 

issues may be propagated from the OQL to the programming language; e.g., object 

persistence. 

Language Features. Language features are important in the design of an 

OQL. Language features determine the characteristics, syntax, and semantics of an 

OQL. There are some high-level characteristics that should be decided; e.g., whether 

an OQL is computationally complete or not, or whether an OQL should preserve 

encapsulation, and so on. An OQL may have an abstract syntax which can then be 

tied to a concrete syntax for merging the query language into a specific programming 

language. 

A.2.3 Terminology 

Figure A.l lists the acronyms commonly used in the discussions of OQLs and 

ODBMSs. In this section, we select a number of terms related to OQLs and provide 

detailed explanations. The terms are grouped in two categories: object data man­

agement and formal query models. A detailed object data management glossary can 

be found in [45]. Discussions of formal query models in ODBMSs can be found in 
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API Application Program Interface 
DBSSG X3/SPARC Database Systems Study Group 
DDL Data Definition Language 
DML Data Manipulation Language 
ODM Object Data Management 
ODMG Object Database Management Group 
ODBMS Object Database Management System 
OODBS Object-Oriented Database System 
OMG Object Management Group 
OODBTG X3/SPARC/DBSSG Object-Oriented Database Task Group 
OQL Object Query Language 
ORB Object Request Broker 
SPARC X3 Standards Planning and Requirements Committee 
SQL Structured Query Language 
SQL3 ISO-ANSI Working Draft Database Language SQL (SQL3) 

Figure A.l: Acronyms. 

[17, 66, 67, 77, 78, 84, 95, 103, 107]. 

A.2.3.1 Object Data Management In [45], the scope of the term, object 

data management, is identified to include object models and DBMSs. On the other 

hand, the term, object information management, broadens this scope to additionally 

include the use of objects in programming languages, network management, design 

methodologies, user interfaces, and related areas. We chose to use the term object 

rather than object-oriented since there exist object-based data management systems 

that are not object-oriented. 

V Abstract Looping. A mechanism for examining the contents of aggregates with­

out knowing the underlying data structures or implementations. For example, an 
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iterator. 

V Aggregate, Complex Object & Composite Object. An aggregate is a col­

lection of objects that may or may not have the same type. Therefore, an aggregate 

may be homogeneous or heterogeneous. An extensional aggregate refers to an ag­

gregate whose identity is based on membership. An intentional aggregate refers to 

an aggregate whose identity is based on its creation event and its membership may 

change without affecting its identity. Complex objects are built from simpler ones 

by applying constructors to them; e.g., tuples, sets, arrays, bags, lists, and so on. 

Composite object is defined as an object with a hierarchy of exclusive component 

objects. Composite objects capture the IS-PART-OF relationship. 

V Application Program Interface. A definition of the syntax and semantics that 

allows an application written in a host programming language to access or control 

an ODM system. 

V Associative Database Access. Also refered to as value-based database access. 

As opposed to navigational (i.e., reference-based) access, associative access allows 

parallel access/retrieval (or content-addressed lookup) of data based on a predicate. 

V Attribute. Also referred to as the property or instance variable of an object. All 

these terms refer to the object information that represents the visible part of the state 

of an object, and can be manipulated by get and set operations or other operations 

with similar semantics. 
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V Computationally Complete. A property of a programming language that in­

cludes control constructs for defining procedures or operations. A purely declarative 

language is not computationally complete. 

V Delegation. The concept of an object assigning or transferring to another object 

the responsibility for defining an object, performing an operation, or implementing 

the state. Also called instance-instance inheritance. 

V Embedded Language. A language whose commands are placed directly in an­

other host programming language. 

V Generalization & Specialization. Generalization refers to the action or pro­

cess of deriving from many objects a concept or principle that is applicable to all 

the objects. For example, a base class is a generalization of its derived classes. Spe­

cialization refers to the action or process of adding a concept, principle, or operation 

to a class or type that is more specific or particular than other similar classes or types. 

V Impedance Mismatch. The presence of incompatibilities between the data 

model of a programming language and that of a database. An ODM system has 

the property of seamlessness if the impedance mismatch is resolved in the sense that 

the data models of the database and the host programming language are the same 

syntactically or semantically, the host DML can be used as the ODM DML, or the 

ODM API is a natural extension to the host programming language. 
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V Integrity Constraint. A predicate that states a condition that must hold for a 

system or an object to be in a legal state or that defines legal state transitions. Ref­

erential integrity is a kind of integrity constraint that guarantees that all referenced 

objects exist. 

V Meta Data. Meta data refer to the information about data. In an DBMS, meta 

data refer to database schémas that describe the data stored in the database. In an 

object model, meta data refers to type definitions or class definitions that describe 

the structure and behavior of their instances. 

V Persistence. A property of an object or a programming language. A persis­

tent object exists longer than the process that created it. A persistent progranmiing 

language is a language in which the values of some or all data elements survive an 

execution of a program written in the language. 

V Reference Model. A model that provides a framework to understand the key 

ideas and scope of a paradigm, to define the common characteristics of a system, and 

to provide a basis for comparing similar systems. 

V Reflective/Reflexive Systems. Reflexive systems often refer to systems im­

plemented in terms of themselves. Reflective systems are systems with Meta-Objoct 

Protocol; i.e., meta-classes are accessible to users. Reflective systems are inevitably 

reflexive. 
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V Transitive Closure. A property of an operation that either returns all objects 

reachable from an object, or returns all objects reachable from an object subject to 

a boundary condition. 

A.2.3.2 Formal Query Model A query model describes how a query is 

expressed, processed, and optimized. A formal query model normally consists of a 

calculus, an algebra, and a complete query processing methodology. The research in 

the query models for ODBMSs has yet to explore many relevant issues. Although 

most terms have similar meanings in query models for ODBMSs and RDBMSs, some 

of the terms do differ due to the differences between ODBMSs and RDBMSs. 

V Calculus &: Algebra. Ozsu and Straube gave a definition of calculus and algebra 

in [84]: "A calculus allows queries to be specified declaratively without any concern 

for processing details. Queries expressed in an algebra are procedural in nature but 

can be optimized." The query language must be equivalent to the calculus in expres­

sive power. The calculus representations can be translated to algebra representations 

which can be optimized and used to generate the execution plan for accessing the 

DBMS. An algebra can be used in different ways. For example, an algebra can be 

used as the formal semantics and the theoretical foundation of a query language. An 

algebra can also be used as a framework for query optimization. In some cases, an 

algebra can be directly used as a query language. 

V Completeness, Safety & Closure. Completeness of a query model requires 
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the calculus and the algebra to be equivalent in expressive power. Safety of calculus 

expressions guarantees that queries retrieve a finite set of objects in a finite amount 

of time. The closure property of an object algebra requires that the operators of the 

algebra operate on objects of a type in the type system and returns a set of objects 

whose types exist in the type system. 

A.3 Characteristics 

We characterize the OQLs along four dimensions: foundation, functionality, lan­

guage environment, and language features. The foundation provides the basis for 

describing the modeling power, expressiveness, and features of OQLs. The function­

ality describes what an OQL is used for; i.e., the application requirements that are 

provided by the OQL. To develop an OQL, we need to know the language environ­

ment in addition to its foundation and functionality; e.g., how an OQL interacts with 

other components of the hosting ODBMS. Finally, the features of an OQL are deter­

mined in such a way that the application requirements are met and the development 

is feasible under the constraints of the language environment. 

A.3.1 Foundation 

The foundation of an OQL is composed of an object model and a query model. 

Whether an OQL should have the same object model as that of its hosting ODBMS 

remains a design decision. However, for the sake of the discussion we assume that an 

OQL does have the same object model as that of its hosting ODBMS. We use the 

object model described in [29, 123] as a reference object model. The query model for 

ODBMSs has recently been investigated[17, 66, 67, 77, 78, 84, 95, 103, 107]. 
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A.3.1.1 Object Model The ODMG object model is deemed as a superset 

of the OMG object model[29]. We use the ODMG object model as our reference 

model. In this section, we describe both the OMG object model[123] and the ODMG 

object model, and explain how an object model may affect an OQL. 

A Reference Object Model. A reference object model (ROM) is used 

to provide a common basis for modeling real-world and conceptual entities. The 

ROM is composed of a core object model and a set of components which are compat­

ible extensions to the core object model. The core object model along with different 

combinations of the components provide the modeling facility for a particular appli­

cation domain. The ROM is extensible in the sense that components can be added 

to tailor to the requirements of existing and future application domains. The basic 

modeling construct is an object. A type has a unique identifier, an interface, and an 

extension. An object is an instance of a type. The state and behavior of an object 

are the value and implementations of the properties inherited from the interface of 

the object's type. The extension of a type is the set of its instances. A class is a 

collection of objects that have the same type and the same implementation of the 

type's interface. We define a type system as a group of types that model a specific 

application domain. The set of instances of the types in a type system forms an 

object system. The object model of ODMG-93 provides as components a number of 

compatible extensions to the OMG core object model. These extensions along with 

the core object model create a object model for ODBMSs. The extensions include the 

notions of attributes and relationships, structured objects, built-in type hierarchies, 

and transactions. 
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Object Model and OQL. A conceptual data model is the foundation 

for describing a query language. Similarly, an object model determines the semantics 

of an OQL. An object model is the basis for describing the structure, state, and 

semantics of real-world entities which are required by an OQL to provide different 

views of the object database for users. 

A.3.1.2 Query Model A query model provides a formal basis for describing 

the syntax, semantics, and processing methodology of queries. The query facility 

of the RDBMSs is based on a formal query model[36]. The lack of consensus on 

the formalism of existing object models has hampered the progress of formal query 

models for ODBMSs. The relevant issues on query models in ODBMSs have not been 

fully investigated[84]. It is hard to say whether a query model is essential for the 

success of ODBMSs. However, a formal query model will certainly help the design 

of OQLs and future standardization efforts. In general, a query model consists of a 

formal description of the syntax and semantics of queries as well as a complete ((uery 

processing methodology. The syntax and semantics of queries may be a calculus, an 

algebra, and a set of algorithms for the transformation between the two. The query 

processing methodology includes the interpretation, optimization, and execution of 

queries. Query model issues of ODBMSs have been extensively addressed in [84]. 

A.3.2 Functionality 

The functionality of an OQL addresses what an OQL accomplishes and how. 

The basic functionality of an OQL may include the definition, creation, update, 

retrieval, and deletion of the object and type information. In the actual design and 
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development of ODBMSs, the above-mentioned basic functionality may spread over 

a number of languages; e.g., DDL, DML, OQL, etc. The way an OQL achieves 

the basic functionality spawns detailed requirements. For example, in the context of 

defining objects and types, an OQL may allow a composite object to be defined over a 

set of objects of different types. Then, the created composite object may have a new 

type. Or, in some cases, we may want to avoid creating a new type for a composite 

object in order to keep the type hierarchy from growing. In the context of creating 

and deleting objects/types, an OQL may provide constructors and destructors similar 

to C++. These constructors and destructors may be implicitly or explicitly invoked 

upon creation or deletion of objects/types. The retrieval or querying of objects/types 

involve many interesting features of an OQL. For example, what can be queried? 

What type of object/data can be returned from a query? Can new objects and/or 

new types be created via queries? If new types can be created from queries, where 

should these new types be placed in the existing type hierarchy? Can the returned 

result be further cjueried? Are value joins and/or entity (reference) joins allowed? 

Can the join be done across object collections? How is the scope of the query defined? 

Can a query be used against multiple collections? If so, how will the query result 

be presented and used? Is the query always against a single class, a sub-graph or 

the entire graph? What kind of types and type extents can be queried? Can both 

transient and persistent objects be queried? 

A.3.3 Language Environment 

The language environment of an OQL describes how an OQL interacts with other 

components of the hosting ODBMS. This kind of information is not captured by the 
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syntax or semantics of the OQL. However, the language environment of an OQL 

does provide information regarding the design, implementation and performance of 

the OQL. For example, an OQL of an ODBMS may have several components like 

DDL and DML. It is also possible that the query facility is provided as a number 

of other components of the hosting ODBMS in addition to the OQL. In both cases, 

the hosting ODBMS must support an integrated environment such that users have 

a uniform querying interface. The low-level save/restore scheme is not an issue in 

most OQLs. Although it may affect the use of OQLs when both persistent and 

transient objects are allowed to be queried. The same issue is true as to what kind 

of persistence is provided. Most OQLs are declarative and are often integrated with 

a programming language. Different degrees and types of integration are possible. 

A.3.4 Language Features 

Language features describe the syntax and semantics of the OQL. How the func­

tionality of the OQL is provided and how users query and view the object database 

are determined by the language features of an OQL. Knowing the language features 

of an OQL can provide insight into how the OQL issues are resolved or supported; 

e.g., side effects of methods and database integrity. 

A.3.4.1 Object-Orientation Common object-oriented properties like en­

capsulation, inheritance, and polymorphism are normally supported in an OQL, al­

though there might be differences in different existing OQLs. Different degrees of 

encapsulation can be supported in an OQL. Full encapsulation will ensure that the 

access to object properties is always through externally visible methods. Partial or 
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no encapsulation allows direct access of object properties. There also exist differ­

ent types of inheritance; e.g., partial inheritance, single inheritance, and multiple 

inheritance. Polymorphism can be supported in the form of overloading, coercion, 

inclusion, or generalizing. 

A.3.4.2 Type Definition & Object Management Queries are used over 

collections of objects of the same or different types. The definition of types creates a 

type hierarchy that captures the relationships between types. The instances of types 

can be grouped in different ways to form different type extents which correspond to 

different partitions of the object database. If both persistent and transient objects 

are allowed to be queried, both persistent and transient types should be allowed to be 

defined in the OQL. Object management supports the creation, deletion, save/restore, 

and update of objects in the object database. 

A.3.4.3 Expressive Power The expressive power affects the use of an OQL. 

An OQL should be simple and easy to use while maintaining the capability of ex­

pressing the precise semantics of both simple and complex queries. Although the 

syntax may differ, there are many common features of existing OQLs that enhance 

the expressiveness of queries through language constructs and extended semantics. 

A.3.4.4 Other Supporting Features Some language features are useful 

although they are not always necessary in most queries. For example, built-in ag­

gregate functions provide pre-defined functions or operators that can be applied to 

aggregates. Such built-in aggregate functions can often be used to compute the sum, 

average, etc., over a property of a set of objects. Import/export facilities are also 
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examples of other supporting features of OQLs. Import/export facilities can help 

exchange data between the ODBMS and other software systems. 

Existing OQLs will be surveyed and analyzed in the next two sections. We group 

existing OQLs into two categories based on their hosting ODBMSs; OQLs of com­

mercial ODBMSs, and OQLs of the ODBMS resulting from proposals and research 

prototypes. The presentation of our survey is laid on the framework described in 

Section A.3. The analysis is focused on the distinguishable features of the individual 

OQL. 

A.4 Survey of Commercial ODBMSs 

A. 4.1 Servio 

GemStone is an OODBMS developed by Servio Corporation[20, 73, 142]. Fea­

tures of GemStone include active database, concurrent support for multiple program­

ming languages, multi-user transaction control, object-level security, dynamic schema 

and object evolution, legacy gateways, etc. Associative access can be done through 

path expressions and instance variable typing in OPAL. The basic components of the 

GemStone architecture are the Gem server process and the Stone monitor. The Gem 

server is where object behavior specified in GemStone's DML is executed. Each Gem 

server autonomously performs all actions necessary to commit a transaction. The 

Stone monitor coordinates such activity by multiple Gems. 

In GemStone, an entity is modeled as an object. Properties of entities can be 

simple data values or other entities of arbitrary complexity. Set-valued objects are 

supported. Sets can have arbitrary objects as elements and need not be homogeneous. 

Gemstone supports object identity. To reduce update anomalies that exist in the 
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relational data model, entities with information in common can be modeled as two 

objects with a shared sub-object containing the common information. A library of 

classes implementing frequently used data types is provided. Classes are organized 

in a class hierarchy. Subclassing is supported to capture similarities among various 

classes of entities that are not totally identical in structure or behavior. 

GemStone provides an object-oriented database language called OPAL which 

is used for data definition, data manipulation and general computation. OPAL is 

computationally complete. The query language of GemStone is provided as a limited 

calculus sub-language. Associative queries can be viewed as procedural OPAL code. 

Selection of collections is supported for subclasses of type set and bag. GemStone 

chose to index on collections instead of classes. For use with indices, the path syntax 

has been added to the OPAL language. For any variable, we can append to it a path 

composed of a sequence of links which specify some sub-part of an object. Selection 

conditions for associative access are conjunctions of comparisons. The comparisons 

are between path expressions and other path expressions or literals. OPAL provides 

typing for names and anonymous instance variables. Both named and anonymous 

instance variable typings are inherited through the type hierarchy. 

A.4.2 HP 

OpenODB is a commercial ODBMS from the Hewlett Packard Company. Open-

ODB has a client-server architecture. OpenODB clients include an interactive object-

oriented SQL (lOSQL), a graphical browser, a programmatic interface, user applica­

tions and tools. An object-oriented SQL (HP OSQL) is provided as a query interface. 

lOSQL allows users to interactively enter lOSQL statements and query the object 
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database. The graphical browser allows users to graphically explore the database 

schema and contents. The programmatic interface is similar to a ^''Dynamic SQL" 

interface, and exchanges strings representing OSQL statements with the OpenODB 

server. User applications and tools developed using lOSQL, the graphical browser or 

the programmatic interface are all referred to as OpenODB clients. OpenODB server 

components include an object manager, a relational storage manager, and external 

functions. An object-oriented SQL (HP OSQL) is provided as an object-oriented 

front-end for relational databases. OSQL can be used for defining, creating, and ma­

nipulating objects, types, and functions. In OSQL, users only need to specify what 

data to retrieve instead of how to get the data. OSQL is a functional language that 

is a semantic superset of SQL. In addition to supporting a common query facility, 

OSQL is also used for application development. 

The object model of OpenODB has three major components; objects, types, 

and functions. Objects are a combination of data and stored code that operate on 

the data. Types are used to classify similar objects. Functions operate on data in the 

database and also define the behavior of that data in the database. OpenODB sup­

ports three types of user-defined functions: stored functions, OSQL-based functions, 

and external functions. Stored functions define attributes and relationships that are 

stored in the database. OSQL-based functions define attributes and relationships 

that are retrieved or calculated with OSQL statements. External functions are a 

reference to code or data stored outside of OpenODB. Basic types and functions can 

be created using the CREATE TYPE statement. Additional functions can be created 

using the CREATE FUNCTION statement. 



www.manaraa.com

129 

A.4.3 ITASCA 

The ITASCA Distributed ODBMS was derived from the ORION series of object 

database research prototypes which were researched and developed at the Microelec­

tronics and Computer Technology Corporation (MCC)[133]. The ITASCA product 

is an extension of the third and final ORION prototype from MCC. ITASCA is a 

fully distributed ODBMS. It has a client-server architecture. Both the processing 

and data can be distributed. Multiple servers and multiple clients are supported. 

The goal of the ITASCA design is to achieve transparent data access and to avoid 

single point of failure. 

ITASCA uniformly models any real-world entity as an object. Each ITASCA 

object has a unique identifier along with state and behavior. Attributes represent 

the state of an object while methods define the behavior of the object. Classes and 

instances are both first-class objects. ITASCA supports attribute methods at both 

the instance level and the class level. Class objects may receive messages exactly 

like instance objects. Subclasses derive from existing classes. The resulting database 

schema forms a class lattice. Each subclass inherits all the attributes and methods 

defined for its superclasses. Multiple inheritance is supported. ITASCA supports 

composite objects built from component objects. Inverse links are maintained be­

tween parent and child objects. Child objects can be independent of their parent 

objects. Child objects can also be shared by several parent objects. If a child object 

is dependent upon its parent, it is deleted when its parent is deleted. 

An ITASCA database contains both shared and private database partitions. 

The shared database contains objects that are accessible to all applications. Private 

databases contain objects that are localized to a given user or group of users. Appli-
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cations can be written to access shared or private databases. ITASCA applications 

can be written in C++, CLOS, Lisp, C, and C callable languages. ITASCA objects are 

represented in a neutral format independent of any programming languages. There­

fore, objects can be created using one programming language and then be updated 

or accessed using another programming language. The ITASCA query language is a 

4GL interactive language which may be embedded in a program. ITASCA database 

methods are written in a Lisp-based 4GL which can reuse existing C, FORTRAN, 

or Lisp code. The query language supports text pattern matching of stored text as 

part of ITASCA's multimedia data management. ITASCA is an active database. 

Methods can be stored and activated directly in the database. This feature allows 

database methods to be changed without recompilation or relinking the application 

code. Also, the database methods or objects can be reused among multiple program­

ming languages. 

A.4.4 Objectivity 

Objectivity/DB[140] is a commercial ODBMS developed by Objectivity Inc. Ob­

jectivity/DB has a distributed runtime architecture with a number of subsystems. 

The Programming Inteiface allows applications written in C or C++ to communicate 

with Objectivity/DB. The Type Manager stores, retrieves and maintains descriptions 

of all classes defined in the database. The Object Manager maintains and manipu­

lates objects within the database. The Storage Manager \s responsible for the physical 

placement of data in virtual memory and physical storage. The Lock Server coor­

dinates access to all objects in the database and supports concurrency management 

among multiple users, multiple hosts, multiple databases, and multiple networks. 
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The Network Manager coordinates communication between processes, allowing local 

processes to transparently access data located on remote workstations. The Oper­

ating System Interface provides basic services for all other software in the system. 

Object query and traversal is provided as part of the development environment. A 

range of database facilities is supported; e.g., transaction management, recovery, etc. 

In Objectivity/DB, an object is the fundamental storage entity that can be 

accessed and manipulated by Objectivity/DB applications. Objects are stored on 

pages. When an object is first referenced in a transaction, it is converted to the 

proper machine format. The Objectivity/DB object model follows the C++ object 

model. Object persistence is through inheritance from persistent classes. Objec­

tivity/DB supports entity-relationship data models through the use of associations. 

An association is a logical link used to indicate that a relationship exists between 

two persistent objects. Associations can indicate 1:1, l:l\l, and l\l:M relationships. 

Objcctivity/DB allows objects spanning mxdtiple remote databases to participate in 

an association. Associations are type safe, and are declared as part of an object 

class. Associations can be declared on both object classes involved in the relation. 

This kind of association is called bi-directional and allows the application to traverse 

between related objects through such links. This feature also helps maintain ref­

erential integrity in Objectivity/DB. Composite objects that group arbitrary set of 

objects of any classes are allowed. Objects can be linked via dynamic associations. 

In Objectivity/DB, types are defined as full objects. 

Standard cfront C++ can be used as the DDL for Objectivity/DB schémas. The 

Objectivity/DB DDL is a high-level data modeling language that is a supersc^t of 

the standard C++, with extensions for associations. Methods for using associations 
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are automatically generated by the Objectivity Schema Processor. Composite ob­

jects are modeled by specifying behavior attributes for Objectivity/DB associations. 

These attributes define what happens if an action should occur to an object partic­

ipating in a relationship. Therefore, applications can model an arbitrary number of 

related objects as a single composite object. The Objectivity/DB variable sized array 

(varray) classes can be used to model complex objects. An object class may include 

any number of varray, and elements may be added or removed at run time. Objec­

tivity/DB supports unordered collections. The methods provided at each level of the 

Objectivity/DB object containment hierarchy can be used to determine what objects 

are contained by another. Objects in Objectivity/DB may be given a name ivithin a 

name scope defined by the user. Any object can be used to define a name scope, and 

an object may be given a name in several name scopes. Objectivity/DB supports 

traversal of objects in a traditional navigational (pointer chasing) fashion. Abstract 

looping is provided through an iterator which is a subclass of a handle. Objects may 

be accessed via handles and handles are type compatible with object references. The 

Objectivity/DB library interfaces provide full and consistent support for iterators. 

Objectivity/SQL++ provides associative query facility and allows queries to be for­

mulated using a subset of SQL syntax. Standard C++ constructs can be used with 

query statements. 

A,4.5 Object Design 

ObjectStore[70, 83, 137, 138] is an ODBMS produced by Object Design, Inc. 

ObjectStore has a client-server architecture. The server process manages physical 

storage and arbitrates among client processes making requests for the data. The client 
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requests pages from the server in response to page faults generated by the application. 

The ObjectStore server only deals with pages. The client handles the query and 

the management of objects. The ObjectStore client libraries provide the interface 

between the user's application and the server. This interface manages the logical 

view of the data including collections, queries, versions, transaction management, 

memory management, and relationships among objects. In other words, the bulk of 

the database functionality and the application logic reside on the client side. 

ObjectStore supports the complete C++ object model. Basic C++ types, virtual 

functions, inheritance, polymorphism, encapsulation, and parameterized types are 

all supported in ObjectStore. In addition, facilities are provided for modeling object 

collections, relationships between objects, and versioning of objects. In ObjectStore, 

collections are groupings of objects of the same type. Default collection behaviors are 

provided; e.g., insertion, removal, and retrieval of collection elements, set-theoretic 

operations such as union and intersection, and set-theoretic comparisons. Objects 

may have "embedded collections" that are arbitrarily large. In ObjectStore, queries 

can be expressed using an extended C++ supported by an extended C++ compiler, or 

through function calls belonging to a library interface. 

In ObjectStore, cjueries are integrated with the host programming language in 

the form of query operators whose operands are a collection and a predicate. A 

library of collection classes like sets, bags, and lists are provided along with default 

collection behaviors. The collection facility is provided for both parameterized and 

non-parameterized classes. ObjectStore supports orthogonal persistence. Pointers to 

persistent objects are used in the same way as pointers to transient objects that have 

been dynamically allocated in the program's virtual address space. An ObjectStore 
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collection class can be either persistent or transient. 

In ObjectStore, the structure of an object database are realized by inter-object 

references. Objects are located by traversing these references and by associative 

queries. Objects may be created, updated, or deleted. An ObjectStore query is an 

expression specified by a query operator. A query expression evaluates to a collection, 

a single object, or a boolean. Nested queries are supported. In a nested query, each 

query has its own range variable named this. In cases where both inner and outer 

range variables need to be referenced, an "alias" can be introduced for the outer range 

variable. Iteration is provided as a loop construct. The elements of a collection can 

be accessed one at a time via a cursor created as an instance of the class os.Cursor. 

For ordered collections, the default order of iteration is the order the elements take 

within the collection itself. For unordered collections such as sets and bags, the 

default iteration order is arbitrary. 

A.4.6 Ontologie 

ONTOS[139], formerly VBASE, is an ODBMS developed by Ontologie, Inc. 

ONTOS is a distributed database and has a client-server architecture. The server side 

manages the data storage. The client side provides the user interface and manages 

the mapping of data to the application process's virtual memory space. An ONTOS 

database may be contained on a single host or distributed over a number of hosts in 

a network. The database is controlled by a primary server which may be distributed 

over other hosts as well. The task of the server process is to manage the underlying 

storage of its portion of the database and resjjoiid to client requests over the network. 

The primary server of each database maps objects to their respective servers. It is 
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also responsible for all operations global to the database. These operations include 

database open and close requests and the control of multi-server commit. The client 

is implemented as a function and a class library that is linked into the application 

process. It manages the communication between applications and one or more servers. 

The interface between the application and the client itself is composed of a relatively 

small set of functions and classes. 

ONTOS's object model uses objects as the basic modeling construct. The ON-

TOS class library provides a root Object class which is the parent of all persistent 

classes. Object defines a constructor and a destructor for creating and deleting objects 

in the object database. ONTOS objects can be referenced by name or by reference. 

Aggregate classes are supported for grouping objects and for modeling one to many 

relationships. The aggregate classes provided by ONTOS include Dictionaries, Sets, 

Arrays and Lists. The query processing in ONTOS adds navigational extensions to 

SQL predicate calculus semantics, and enhances the SQL's notion of table by includ­

ing arbitrary collections of objects such as aggregates. 

The ONTOS Object SQL extends the SELECT, FROM, and WHERE clauses of 

standard SQL to provide a query facility for the existing user base. The ONTOS 

Object SQL also provides an ad hoc query mechanism, aggregate manipulation, and 

convenient persistence for object language systems. In ONTOS, the FROM clause 

accepts class names and any argument that evaluates to a collection of objects. The 

SELECT clause accepts property names, member function invocations, and "navi­

gational style" property path expressions. The WHERE clause is extended to allow 

arbitrary Boolean expressions. 
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A.4.7 O2 

The O2 system is an OODBMS developed by the O2 Technology[8, 9, 141]. The 

O2 system consists of three tightly integrated components: 02Engine, OgDevelopment 

Environment, and O2T00IS. 02Query is an integral part of the 02Development En­

vironment. O2Query provides a query language used to manipulate O2 objects. It 

can be used interactively for ad hoc access to the object database, from a program­

ming language, or from the O2C 4GL. There were a number of design chocies made 

in the design of the O2 query language. First of all, the query language violates 

encapsulation in its ad hoc mode, but not in its programming or embedded mode. 

Secondly, a query returns an object or a value. Returned objects are those already 

existing in the database while new values can be built by a query. Thirdly, the query 

language is functional in nature. Finally, the query language ignores types and the 

type hierarchy. Type checking is performed at run time in the query mode and at 

compile time in the programming mode. 

O2 handles values and objects. Data can be either objects with identify and 

encapsulation, or complex values manipulated through algebraic operations. Objects 

are instances of classes, and values are instances of types. Each object has an object 

identity which is unique, value independent, and allows reference to the object. An 

object belongs to a class which is characterized by the type of its instances and by a 

set of operators called methods. An object can only be manipulated via the methods 

given in its class interface. Og also supports late binding for methods. In O2, values 

are characterized by their types. Values may be composed of objects as objects may 

be composed of values. However, objects are encapsulated through class interfaces 

while values are not. Values have no identity. Standard operators are available for 
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manipulating tuple, set and list values. 

The Og programming interface provides a schema command language for defin­

ing database schémas. The query language provided by O2 is an SQL-type functional 

language that offers associative access to the object database through the SELECT-

FROM-WHERE construct. The semantics of an O2 query f{xi,x2,...,xn) is defined 

as follows: for every database, / defines a partial mapping {OUV)^ OliV, where 

O is the set of persistent objects of the database, and V is the set of the persistent 

and possible values of the database. Possible values of the database refer to those 

values whose components are atomic values or objects belonging to O. The SELECT-

FROM-WHERE construct is a set filter. The traditional semantics are preserved. The 

FROM clause indicates the filtered set. The WHERE clause specifies the conditions 

of the elements on which the operations expressed inside the SELECT clause will be 

executed. Oo provides an element operator to extract the unique element of a sin­

gleton set. List elements are ordered and can be accessed directly without filtering 

the entire list. To access all levels of a structure, e.g. to navigate through embedded 

sets or lists, O2 provides a flatten operator that returns a set that is the union of 

the sets returned from an embedded query. The define keyword introduces named 

queries. A named query may denote a value or an object. A named query can be 

parameterized and denote a function. The set operator builds a set value. The tu­

ple operator constructs a tuple value. Nested values can be built by combining the 

various operators. The only restriction is that the set operator must be applied on 

sets. Co-existence of objects and values in the object model allows users to use a 

complex value without defining a new class. This avoids undesirable growth of the 

class hierarchy. The notion of values in O2 is similar to the concept of a composite 
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object in ORION or the concept of own attribute in EXODUS. 

A.4.8 BKS Software 

POET (Persistent Objects and Extended database Technology) is an ODBMS 

developed by BKS Software. POET has a tight semantic integration with C++. 

Database functionality like queries, transaction, indexing, and so on, is supported 

through extensions to C++. The goal of POET is to integrate object-oriented pro­

gramming with database facilities. POET follows the object model of C++. Classes 

and objects are used along with common object-oriented features like encapsulation, 

inheritance, polymorphism, user-defined data types, and relationships among objects. 

Object persistence is achieved through class libraries and extensions to C++. 

In POET, a class is made persistent by using the persistent keyword in the decla­

ration of the class. The class definitions must be processed by the PTXX precompiler 

to produce the database. Then, objects can be created to populate the database. 

When the PTXX precompiler encounters a type declaration it creates a set called 

AllSet which holds all objects of that type. The AllSet can be iterated sequentially 

to access each object of a given type. POET supports value-based queries. POET 

queries always operate on a set and the query result is also a set. The POET query 

facility is provided through class library functions. The POET pre-compiler gener­

ates a query class for each class whose instances may become persistent. Conditionals 

and operators appear as methods of the query class. POET supports and extends a 

single programming language, C++, to accommodate database functionality without 

losing the flexibility of the object-oriented programming paradigm. The drawback 

of POET'S approach is that the database functionality is provided through class li­
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braries. For this reason, POET users must be familiar with C++ in order to develop 

applications with POET. 

A.4.9 Statice 

Statice is an ODBMS that runs with the Genera operating systems on Symbolics 

workstations[109]. Statice is written in Symbolics Common Lisp which includes the 

Flavors object-oriented programming language extension. Statice provides client pro­

grams with persistent, shared storage for data. The Statice object model is similar in 

some respect to Daplex and the object model of Iris. Objects are modeled by entities 

in the database. The Statice type system maps directly to the Common Lisp type 

system. The basic modeling construct is an entity which is an instance of an entity 

type. An application object model is composed of a set of entity types. An entity 

type has attributes that model both the properties of entities, and the relationships 

among entities. The attributes can be single-valued or set-valued. The type of an 

attribute can be an entity type, a conventional value type, or a user-defined value 

type. 

The programmatic interface of Statice is closely integrated with Symbolics Com­

mon Lisp and with its object-oriented programming system. A database schema is 

defined in Common Lisp. An accessor function is defined for each attribute of an 

entity type. An accessor function retrieves the value of an attribute of an entity. The 

for-each special form provides associative access to entities in a database. It iterates 

over entities of an entity type or in a set and selects based on attribute values. This 

servos as the query language of Statice. 
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A.4.10 Unisys 

SIM is a commercially available ODBMS from Unisys[56]. It is based on a 

semantic data model. The goal of SIM is to allow the semantics of data to be defined 

in the schema and make the DBMS responsible for enforcing the data integrity. SIM 

provides a rich set of constructs for schema definition and a non-procedural data 

manipulation language as a user query interface. The language constructs also allow 

the specification of inter-object relationships, integrity constraints, and generalization 

hierarchies modeled by directed acyclic graph. 

In SIM, the primary unit of data encapsulation is a class which represents a 

meaningful collection of entities. The notion of subclass is supported. Subclasses 

inherit all the attributes of all their parent classes in the generalization hierarchy. 

Every base class has a system-maintained attribute called its surrogate which is used 

in the implementation of generalization hierarchies and entity relationships. SIM 

distinguishes between data-valued attributes and entity-valued attributes. A data-

valued attribute describes a property of each entity in a class by associating the 

entity with a value or a set of values from a domain of values. An entity-valued 

attribute represents a binary relationship between the class that owns it and the 

class it points to. SIM also supports inverse relationships which can be explicitly 

specified by the user. 

The DML of SIM is its database query language. The DML of SIM consists of 

a RETRIEVE clause, some aggregate functions like AVG, COUNT, and update state­

ments like INSERT, MODIFY, and DELETE. A query is formulated to access instances 

of a class which is referred to as a perspective class in SIM. Instances of other classes 

may also be queried based on their relationships with the perspective class. The 
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links between the perspective class and other classes are established by applying 

qualifications on the attributes. The basic SIM query has the following construct: 

[FROM <perspective class list>] 
RETRIEVE [ TABLE [DISTINCT] 1 STRUCTURE ] <target-list> 
[ ORDERED BY <order list> ] [ WHERE <selection expression> ]. 

Perspective class list is the list of perspective classes for a query with optional 

associated reference variables. Target list and order list are lists of expressions made 

up of constants, and attributes of the perspective classes. 

A.4.11 UniSQL 

UniSQL Inc. has developed a suite of integrated ODBMS and application de­

velopment products for object-oriented development, integration of multimedia data, 

and multidatabase access to RDBMSs and ODBMSs[143]. An object SQL is pro­

vided as part of the user interface. UniSQL offers a generalized and extensible 

relational/object-oriented model. In UniSQL, the traditional relational model and 

SQL can be used to build relational databases. In addition, object-oriented fea­

tures are provided through extended support for nested tables, registered procedures 

(methods), and class (table) inheritance. 

Nested tables are a technique for defining a field as being a row instance in an­

other table. The notion of defining a field's data type as a row instance or a set of 

rows in another table is referred to as an arbitrary data type in UniSQL. To navigate 

the nested tables, the SQL syntax is extended to incorporate path expressions to 

identify the target nested column. In the case of set-of relationships, a special nested 
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cursor mechanism is used to step through the one-to-many relationship. Procedures 

(methods) are programs written in programming languages and are associated (reg­

istered) with a table. Procedures can manipulate data in the associated table, access 

other tables, request operating system services, or call other programs and proce­

dures. Procedures are designed to shield users from the complexity of manipulating 

complex data. Inheritance is used to implement subtypes. A table can be declared as 

a subtype of its parent table. The child table inherits all of the attributes (columns) 

and registered procedures of the parent's table. UniSQL has extended the SQL syn­

tax to include an ALL qualification in the SQL FROM clause. The ALL qualification 

instructs UniSQL to search subclasses as well as the parent table. 

A.4.12 VERSANT 

VERSANT is an ODBMS developed by the VERSANT Object Technology 

Corporation[144]. VERSANT is implemented within the VERSANT Scalable Dis­

tributed Architecture (VSDA). VSDA supports transparent data distribution, work­

group functions, and dynamic schema management and evolution. VERSANT pro­

vides a C++ application toolset and an object SQL. VERSANT Object SQL can be 

used interactively, or be embedded in C++. 

VERSANT follows the C++ object model and uses objects and classes as the basic 

modeling constructs. Multiple inheritance is supported. In VERSANT, the object 

link is declared by <type>_link. <type>_link is a generated class used to hold the 

linked object. The link class results in a level of indirection. However, the traversal 

along the object links is made transparent. An attribute can also be defined as an 

aggregate link, <type>_agg. The deletion of the parent instance will result in the 
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deletion of the instance linked by the aggregate link. An attribute can be defined to 

be an array of links or embedded oljjects. The DDL and DML of VERSANT can be 

either C or C++. 

VERSANT Object SQL is an SQL-based DML. Syntactically, the general struc­

ture of SQL is used including four basic data manipulation statements: SELECT, 

INSERT, UPDATE and DELETE. Like other OQLs, VERSANT Object SQL is se-

mantically richer than relational SQL. User-defined methods can be used within the 

Object SQL statements. The OSQL SELECT statement follows the same basic struc­

ture of a relational SELECT statement: 

SELECT <inethod or attribute> FROM class WHERE search_condition 
GROUP BY method ORDER BY method 

VERSANT OSQL supports built-in aggregate functions like MIN, MAX, AVG, 

SUM, etc. VERSANT OSQL also provides an "intelligent pointer" mechanism that 

initiates automatic search through the subclasses of a given class. Data from multiple 

classes can be joined in three ways; flat join, subselects, or subqueries. Flat joins are 

structured like the traditional relational join. Subselects and subqueries allow join 

of data from two separate queries. Query result can be bound to program variables 

through a dynamic casting mechanism, called the OSQL-AS() function. 
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A.5 Survey of Proposals and Research Prototypes 

A.5.1 AT&T 

CQL++ is a declarative front-end to the Ode OODBMS[39]. Ode (Object database 

and environment) is a research prototype developed at the AT&T Bell Laboratories[2]. 

A database programming language, 0++, is provided to define, query, and manipu­

late the object database. 0++ borrows and extends the object model of C++. CQL++ 

hides users from knowing 0++ details such as object identifiers, public and private 

members of objects, and the implementations of member functions. CQL++ queries 

operate upon sets of objects and return sets of objects. 

In Ode, a database is a collection of persistent objects. The basic modeling 

construct is objects. At the programming level interface, such as that provided by 

0++, an object consists of an object identifier and a state. On the other hand, CQL++ 

provides a higher level interface to Ode in which users can manipulate objects directly 

without explicit use of object identifiers. Although Ode follows the 0++ object model, 

CQL++ does not provide the full power of the 0++ object model. CQL++ distinguishes 

between persistent and transient objects. Persistent objects reside in the database 

and are grouped into clusters. Transient objects can be placed in temporary clusters. 

The persistence in 0++ follows a number of principles. First of all, persistence 

should be a property of object instances instead of types. Secondly, it should be 

possible to allocate objects of any type in either volatile or persistent store. Thirdly, 

there should be no difference between accessing and manipulating persistent and 

volatile objects. Finally, it should be possible to move objects from persistent store 

to volatile store in much the same way as it is possible to move objects from the stack 
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to the heap and vice versa. CQL++ is based on an type-independent object algebra 

that preserves the closure property of SQL. The classes and objects created using 

CQL++ can be intermixed with those created with 0++. 

CQL++ combines an SQL-like syntax with the C++ object model. CQL++ is 

designed for SQL users as far as the language syntax is concerned. CQL++ is based 

on an object algebra that has the closure over sets of objects. Each CQL++ statement 

or operator takes sets of objects as input and returns sets of objects. CQL++ queries 

are allowed to be nested due to the closure property. A CQL++ query has the following 

basic form: 

SELECT <projectioii-list> FROM <collections:clusters or sets> 
WHERE <search-expression> 

Each operand in the FROM clause is associated with a range variable. Set-valued 

attributes may be used as operands in the FROM clause. The SELECT statement 

returns a set of objects constructed from the cross product of collections that satisfy 

the search expression. The returned portions of selected objects correspond to the 

projection list in the SELECT clause. CQL++ provides clusters and sub-clusters as a 

way of grouping objects of the same type. In other words, CQL++ supports explicit 

type extents. CQL++ also supports set variables and object variables to facilitate the 

manipulation of objects or sets of objects. Set variables and object variables can be 

used to reference sets or objects. 
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A.5.2 GTE 

GTE Laboratories' Distributed Object Management (DOM) project has con­

ducted research on distributed object management technology[75]. The object model 

of the DOM project requires language facilities to support multimedia data types[75]. 

A key issue in database language support for multimedia data types is the integration 

of database access facilities with the general-purpose programming facilities required 

for specifying operations of multimedia data types. In [75], the language requirements 

of the DOM project were described and illustrated in an extended SQL syntax. 

A.5.3 University of Wisconsin (EXODUS) 

The EXTRA data model and the EXCESS query language are part of the EX­

ODUS extensible database system[26, 27, 28]. EXODUS has been designed as a 

toolkit for use as a basis in constructing a spectrum of target database facilities. The 

functionality of EXCESS aims at supporting associative access to object databases. 

EXCESS is designed to be a query language that can be used for both business and 

engineering data. EXCESS is an associative query language that is amenable to query 

optimization techniques. In the EXTRA data model, a database is a collection of 

named persistent objects. EXTRA separates the type definitions from the declara­

tions of their instances. Tuple, set, and array are provided as type constructors that 

can be composed arbitrarily to form new types. User-defined ADTs and multiple 

inheritance are also supported. 

EXCESS allows users to collect related objects in semantically meaningful ag­

gregates which can then be queried. EXCESS is based on QUEL[101]. EXCESS 

provides a uniform syntax for formulating queries over sets of objects, sets of refer­
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ences, and sets of values. An EXCESS query has the basic QUEL range-retrieve-where 

construct. Each range variable has an associated type, and the query may only refer 

to attributes associated with this type. The simplest form of the range statement has 

the traditional QUEL syntax: 

range of <Variable> is <Range_Specification> 

The range specification must identify either a named persistent set, or a subrange of 

an array. Arrays are treated as sets. An implicit range variable is provided for each 

set or array specified in the target list or in the qualification of a query. EXCESS also 

provides a path syntax to simplify the task of formulating queries over nested sets of 

objects. If one of the elements of a path is a single object, it is treated as a singleton 

set. If a query is embedded in a programming language, the object identifier can be 

bound to a host variable for subsequent manipulation. EXCESS supports three types 

of joins: functional joins, exphcit identity joins, and value-based joins. A number of 

aggregate functions like AVG, MIN, etc. are also supported in EXCESS. 

A.5.4 University of Wisconsin (EMS) 

FOX (Finding Objects of experiments) is a declarative query language for a 

scientific experiment management system (EMS) being developed at the University 

of VVisconsin[114]. The goal of the EMS is to support scientists in managing their 

experimental studies and the generated data. An OODBMS is one of the components 

of the EMS. A data model, MOOSE (Modeling Objects Of Scientific Experiments), 

and a declarative query language, FOX, have been developed for the special needs of 

experimental sciences. 



www.manaraa.com

148 

MOOSE is an object-oriented data model that supports complex objects, object 

identity, classes, and multiple inheritance. The basic modeling construct in MOOSE 

is an object. Three kinds of classes are supported in MOOSE: primitive, tuple, and 

collection. The primitive class is similar to the type literal in our reference model. 

Tuple and collection classes are created by users. There are two major relationships 

between MOOSE classes; connection relationships and inheritance relationships. A 

connection relationship between two classes implies a logical or physical relation­

ship between their object instances. An inheritance relationship between two classes 

implies a semantic correspondence between their object instances. 

The DDL of MOOSE provides constructs for creating, updating, and destroying 

classes and relationships. FOX is the DML for MOOSE. The basic structure of a 

FOX query is derived from SQL: 

for <range-binding-list> select <projection-list> 
where <qualification> as <name>; 

Each query or sub-query has an optional naming clause, "as <name>", which 

attaches a name to the query result. Therefore, a query result becomes a named 

object. Named objects allow users to access and reuse the query result. In the for 

clause, object variables may be bound to the members of class extents or collection 

objects described by path expressions. The select clause allows users to specify the 

structure of the query result as well as what to retrieve. Named objects of FOX ran 

be persistently saved in the database. On the contrary, instance variables and object 

variables in Iris and CQL++ cannot be made persistent. 
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A.5.5 HP 

OSQL is tiie object-oriented database language developed for the Iris object-

oriented DBMS at Hewlett-Packard Laboratories[44, 62]. Iris has a layered architec­

ture which consists of a storage manager, an object manager, and a set of interfaces. 

The Iris Storage Manager is a conventional relational storage subsystem. The Iris 

Object Manager supports the Iris data model. Interactive and programming inter­

faces are provided for access through the Iris Object Manager which in turn interacts 

with Iris Storage Manager to fetch the data. 

The Iris DBMS is based on a semantic data model that has three major con­

structs: objects, types, and functions. Objects can be literal objects or surrogate 

objects. A surrogate object has a system-generated unique identifier. Examples of 

surrogate objects are types, functions, and user objects. An object may gain and lose 

types dynamically. Attributes of objects, relationships among objects, and compu­

tations on objects are expressed as functions. In other words. Iris object semantics 

are fully determined by the behavior of functions. Iris supports three methods of 

function implementation: stored, derived, and foreign. The extension of a stored 

function is maintained as stored data. Derived functions are computed by evaluating 

an Iris expression. A foreign function is a subroutine written in some general-purpose 

programming language. Iris queries are expressed in terms of functions and objects. 

Queries are compiled from their object representation to a relational algebra repre­

sentation which is then used to access the database or to invoke foreign functions to 

access other data sources. 

Iris OSQL has been implemented as an interactive interface as well as a language 

extension embedded in programming languages. The application object model can 
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be exposed to the programming language through the interfaces provided by the Iris 

Object Manager. Extensions have been made to programming languages to add the 

notion of object persistence. Persistent-CLOS (PCLOS) is an example. 

Iris OSQL has three major extensions to SQL. First of all, users manipulate types 

and functions rather than tables. This gives Iris OSQL a functional flavor. Second, 

objects may be referenced directly through their keys. Third, user-defined functions 

and Iris system functions may appear in WHERE and SELECT clauses. The major 

functionality of the Iris OSQL includes associative retrieval, bulk update, the support 

of cursor, and the integration with programming languages. Instances of Iris types 

can be bound to host variables. The property of Iris objects are defined in terms 

of functions. The SELECT and CURSOR statements return Iris objects. SELECT 

returns all objects that satisfy the search criteria. CURSOR provides control over 

how the result of a cjuery should be returned. Attributes of Iris objects are accessed 

through functions. The use of in-line definitions of property functions; i.e., functions 

of one argument, simplifies the definition of types and the initialization of objects. 

A.5.6 Brown University 

Sarkar and Reiss[93] proposed a rule-based object query language called OQL. 

The motivation of their research is to use the OQL and an ODBMS to construct 

abstract information about programs, and then allow the program database to be 

queried. The result of the queries are program abstractions that can be visualized 

graphically in a program visualization system. OQL is designed to be an ad hoc 

query language. 

The data model supports four basic types: Integer, Float, Boolean, and String. 
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The domains of basic types are called basic domains. Each basic domain consists 

of a countably infinite set of atomic values. Structured values are built from atomic 

values. Only structured values can be values of objects. Each object belongs to a 

class. A class is defined by specifying a name, a superclass, a structure, and methods. 

OQL is rule-based, statically typed, and allows stratified negation. A program 

consists of a sequence of statements. Each statement is either an assignment or a rule. 

An assignment assigns an r-value to an l-value if the qualifiers are satisfied. The object 

expression in the assignment statement provides an r-value, and the path expression 

provides the l-value. The symbol denotes the assignment operator. A rule has a 

head and a body. A head is a special type of literal with a path expression, an optional 

equality operator, and an object expression. There are three system-defined equality 

operators for id-equality, shallow-equality, and deep-equality. Each body consists of a 

set of literals. Each literal is either a generator or a qualifier. There are set-valued 

and list-valued objects. A generator has a range variable. A qualifier specifies a 

condition. A class expression represents a set of objects of the class. OQL programs 

are translated into algebraic operations, assignment operations, and REPEAT_UNTIL 

loops. 

A.5.7 ORION 

ORION is a research prototype developed as an ODBMS at the Microelectronics 

and Computer Technology Corporation[10, 65, 66, 67]. Advanced features supported 

in ORION include versions and change notification, composite objects, dynamic 

schema evolution, transaction management, queries, and multimedia data manage­

ment. An object subsystem is provided to support most of the above-mentioned 



www.manaraa.com

152 

features. The storage subsystem provides access to object on disk. The transaction 

subsystem manages concurrency control and recovery. A message handler receives 

and processes all messages sent to the ORION system. 

In ORION, objects are the basic modeling construct. Each object has a unique 

object identifier, and encapsulates a state and a behavior. The state of an object is 

the value of the object's attributes. The behavior of an object is the set of methods 

that operate on the state of the object. The relationship between an object and its 

class is the Instance-of relationship. 

An ORION query can be a single-operand query or an n-operand query. A single-

operand query can be an acyclic query or a cyclic query. Complex queries can be 

formulated by combining more than one simple queries with set operations. The 

general form of a simple query is as follows: 

SimpleQuery ::= select TargetClause I 

select TargetClause from RangeClause I 

select TargetClause where QualificationClause I 

select TargetClause from RangeClause where QualificationClause 

The syntax of a query consists of three clauses: target, range, and qualification 

clauses. The target clause specifies the attributes to be retrieved. The range clause 

specifies the binding of variables, called object variables, to the corresponding sets of 

instances of classes. The qualification clause specifies the qualification conditions as 

a Boolean combination of predicates. The query language of ORION supports both 

object equality and value equality. The comparator for object equality is denoted by 

while for value equality it is denoted by "==". A single-operand query retrieves 



www.manaraa.com

153 

objects from only one target class. Recursive queries are supported in ORION. A 

path segment can be defined recursively; 

(<path-l> (recurse <segment>) <path-2>) <comparator> <value-or-variable> 

The number of repetitions of segment is limited by the maximum length of the path 

expression. Two types of methods may appear in an ORION query: a derived-

attribute method or a predicate method. A derived-attribute method computes a 

value from the attribute values of the object or some other objects in the database. 

A predicate method is used as a predicate and returns the logical constants True 

or False. The value returned by the predicate method can then participate in the 

evaluation of the Boolean expression in a query. Multiple-operand queries may result 

from the inclusion of user-specified join attributes or the set operations. To allow 

joins of classes on user-specified join attributes, the class hierarchy must be accounted 

for in the scope of cjuery evaluation. The general form of ORION queries that allow 

set operations is shown below: 

Query ::= (Query) I 
Query Union Query I Query Intersection Query I 
Query Difference Query I SimpleQuery 

The operand of a set operation is a set of instances which may be the set of 

instances of a class defined in the database, or a set of instances obtained as the 

result of a query. 
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A.5.8 University of Zurich 

Quod is a declarative DML developed for NO^ (New Object-Oriented data 

model)[49]. NO^ is the data model of CoOMS (Combined Object Management Sys­

tem). CoOMS is a structurally object-oriented database system being developed at 

SNI (Siemens-Nixdorf Informationssysteme). It is intended to serve as a DBMS and 

as the database component of the ITHACA kernel. ITHACA (Integrated Toolkit for 

Highly Advanced Computer Applications) is an ESPRIT project. 

In NO^, the basic modeling construct is objects. Objects are distinct from 

values which are used to describe properties of objects. Objects are instances of NO" 

types which are actually object types. NO^ contains a collection of basic value sets: 

INTEGER, REAL, FLOAT, STRING, CHARACTER, BOOLEAN, and LONG FIELD. NO-

distinguishes between objects and values. Complex objects and is-part-of relationships 

are supported. Complex values can be created using a set of orthogonal constructors; 

LIST, SET, TUPLE, and ARRAY. Complex object structures can be defined either by 

including objects as components into other objects, or by referencing them. Object 

types are organized in a specialization/generalization hierarchy which allows multiple 

inheritance of structural properties. 

NO^ supports a data definition language for defining database schémas based 

on its data model. An SQL-style query language, Quod, is supported in NO" for 

querying and manipulating objects in the object database. Basic NO^ queries follow 

the SELECT-FROM-WHERE construct. The SELECT clause specifies which parts of 

the objects or values identified by the FROM and WHERE clauses are to be retrieved. 

In NO", the result of a query is existing objects, or values of objects. To create new 

objects from existing objects, a SELECT statement must be explicitly nested in an 
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INSERT statement. The SELECT clause can also be used to define the structure of 

query results. Queries can be embedded in the SELECT clause such that the query 

result can be used in another query. The FROM clause specifies extensions of object 

types. The WHERE clause specifies the restrictions that have to be satisfied by the 

objects or values specified by the SELECT and FROM clauses. Path expressions can 

be used to access objects. Operators similar to those found in O2Query are provided 

to allow access to values or complex values. Built-in operators are provided for sorting 

or grouping lists. A special feature of Quod is the support of a mechanism for defining 

parameterized, named queries which can then be incorporated in other queries. The 

syntax of such queries is as follows: 

define query <name> [(<parameters>)] as <query>. 

The query identified by <name> may occur anywhere a query is allowed. Recursive 

queries are supported in Quod in the form of the construction of transitive closures. 

Quod also provides constructs for the insertion, update, deletion, and migration of 

objects. The migration of an object means a change of the type of an object without 

explicitly creating a new object. The identity of the object remains the same while its 

value changes, and the object is added to a new type extension after being removed 

from its old type extension. 

A.5.9 University of Alberta 

TIGUKAT is a research prototype for object data management developed at 

the University of Alberta[86]. Existing components of TIGUKAT include an ob­

ject model, a query model, an object calculus, an object algebra, a data defini­

tion language (TDL), a query language (TQL), and a control language (TCL). The 
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TIGUKAT object model is built on top of the EXODUS storage manager. 

The TIGUKAT object model is defined behaviorly with a uniform object se­

mantics. All access to and manipulation of objects are based on the application of 

operations on objects. All information is modeled by objects and has the status of a 

first-class object. The object model provides a primitive type system. The notions 

of type and class in TIGUKAT follow our reference object model. The TIGUKAT 

query model is a uniform extension of its object model. The query model defines a 

logical object calculus, an equivalent behavioral/functional algebra, and an SQL-like 

query language. The object calculus defines predicates on collections of objects and 

returns a collection of objects. 

The TIGUKAT user language has three parts: TDL, TQL, and TCL. The main 

function of the TIGUKAT user language is to support the definition, the manipula­

tion, and the retrieval of objects in a TIGUKAT object database on an ad hoc basis. 

TDL supports the definition of metaobjects. All type, collection, class, behavior, and 

function objects are considered metaobjects. TDL is logically divided into six groups 

of statements: type declaration, class declaration, collection declaration, behavior 

manipulation, function declaration, and association. For example, the general syntax 

of the type declaration statement is given below: 

<type declaration>: create type <new reference> under <type list> <behavior list> 

TQL allows the retrieval of objects in an object database. TQL has four basic 

operations: select, insert, delete and update. Each of these operations operates on a 

set of input collections, and returns a collection. The basic query statement in TQL 

is the select statement which has the following general syntax: 
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<select statement) : select <object variable list> 

[into [persistent [all] ] <collection name> 

from <range variable list> [where <boolean formula)] 

The select clause identifies the objects to be returned in a new collection. There 

can be one or more object variables in this clause. The object variables can be in the 

form of simple variables, path expressions, index variables, or constants. The into 

declares a reference to a new collection returned as the result of a query. The from 

clause declares ranges of object variables in the select and where clauses. The where 

clause defined a boolean formula which must be satisfied by the objects returned by 

a query. TCL supports session specific operations. 

A.5.10 UniSQL 

XSQL was proposed in [64] for querying object-oriented databases. The language 

extends path expressions and adapts the first-order formalization of object-oriented 

languages. The goal is to make XSQL easier to use and have greater expressive power. 

The approach of XSQL is based on F-logic[63] in order to give precise semantics to 

XSQL without violating encapsulation. 

The basic modeling construct in XSQL is objects. An object has a logical iden­

tifier which does not have to be unique. A physical object identity is unique and 

represents a surrogate or a pointer to an object. Objects are described via attributes. 

All XSQL objects are tuple-objects. Each entry in a tuple-object is the value of 

one attribute. Set-objects are described as tuple-objects with a single, set-valued 

attribute. An operand appearing in a query may be an attribute name or an object 

name. This feature is used to help users formulate a query without knowing the 
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structure of the database. Classes are used to group related objects. An object is 

related to a class through the instance-of relationships. The subclass or IS-A relation­

ship is defined between classes. The type of a class is determined by the types of 

its methods. The type of a method in a class is described as a signature. Methods 

defined in the scope of a class are inherited by each of the subclasses of the class and 

by all of its instances. The same holds for attributes. 

Path expressions describe paths along the composition hierarchy. A path ex­

pression can be viewed as a composition of methods. The general form of a path 

expression can be described as: 

selectorg. Att Exj {[selector J } AttExjn {[selector^]}, 

where m > 0, and braces denote optional terms. A selector is either an object 

identifier or a variable. The attribute expression, AttEx,^, is either an attribute name 

or an attribute variable that ranges over attribute names. A database path is any 

finite sequence of database objects. A path expression describes a subset of the set of 

all database paths. This subset is determined by the semantics of the path expression. 

Path expressions can be used in a SELECT-FROM-WHERE query construct. Path 

expressions may appear in the WHERE clause to identify the set of objects to be 

retrieved. XSQL also supports class variables. The names of class variables are 

prefixed with the sign. Path expressions can be compared via the comparators 

like =, ! = , >, etc. These comparators are modified with existential and universal 

quantifiers since path expressions represent sets. 
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A.5,11 Texas Instrument 

ZQL[C++] is an extension of C++ with object query capabihties[18]. An initial 

prototype of ZQL[G++] was built as part of the Zeitgeist OODB project at Texas In­

struments and further development has continued on the Open OODB system [111]. A 

commercial implementation by VERSANT Object Technology based on ZQL[C++]'s 

specification is available. 

The object model of ZQL[C++] is the type system of the C++ programming lan­

guage. ZQL[C++] supports explicit sets; i.e., collections of objects can be defined and 

maintained explicitly by an application. Collection types are defined using C++'s pa­

rameterized classes. Query processing of Open OODB is based on a logical algebra 

and a set of execution algorithms that defines the query evaluation environment[17]. 

The foundation of the logical algebra includes the traditional set and relation opera­

tors. 

The design of ZQL[C++] achieves integration between C++ and query capability. 

A uniform type checking can be done for the entire application including queries 

and programming language expressions. Multiple sets of a type may co-exist in an 

application. A query optimizer has been built for the Open OODB system[17]. The 

goal of ZQL[C++] includes allowing queries on transient or persistent data, permitting 

user-defined functions in the formulation of queries, supporting data abstraction and 

inheritance, and providing support for c[ueries on semantically different collection 

types and complex objects. A ZQL[C++] query is an extension of the SQL query 

block: 

<result> = SELECT <objects> FROM <range variablo IN <collection> WHERE 

<predicate>; 
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The SELECT clause identifies the type of the objects in the collection to be re­

turned by the query. The type may be a new type or the same type as one of the 

range variables. The FROM clause declares the range variables and the target collec­

tion to be queried. Several variables ranging over several collections can be declared. 

Pointer range variables are allowed. The WHERE clause specifies the predicate that 

defines the properties to be satisfied by the objects to be retrieved. The predicate can 

be any conditional expression that is legal in a C++ if statement. Path expressions 

may be single-valued or set-valued. 

A.5.12 University of Florida 

An object-oriented query language, OQL, was developed at the University of 

Florida. A graphical user interface implemented for OQL was reported in [106]. A 

(|uery can be specified through browsing and traversing in the graphical user inter­

face. OQL is based on an object-oricnted semantic association model (OSAM*). A 

database schema is represented as a network of associated object classes which form 

a semantic diagram. Domain object classes (D-class) model the domain of primitive 

data types; e.g., integers, strings, and so on. Entity object classes (E-class) model 

application objects. The query model is based on OSAM* and a set of query semantic 

rules. 

OQL has its own runtime environment. There were no programming languages 

integrated with OQL. The schema diagram can be created and browsed via a graph­

ical user interface. It was not reported how the database is populated. No sepa­

rate type definition language is needed. An OQL query returns a subdatabase. A 

subdatabase consists of an intensional association pattern and a set of extensional 
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association pattern. An intensional association pattern is represented as a network 

of E-classes, their associations and descriptive attributes. An extensional association 

pattern is a network of instances and their associations that belong to the classes 

and association types of the intensional association pattern. OQL allows users to 

specify the desired subdatabase by specifying its intensional association pattern, its 

extensional association patterns and the operations to be performed on the classes 

of the subdatabase. OQL preserves the closure property since the result of an OQL 

query is structured and modeled by the same data model, OSAM*. A query block 

in OQL is very similar to the SELECT-FROM-WHERE construct. The context 

clause specifies the intensional and extensional association patterns via the associa­

tion pattern expression. The association operator and set operators are provided to 

construct subdatabases. A subdatabase can be assigned to a variable and be saved 

permanently. 

A.6 Standardization Issues 

Standardization facilitates the development of interoperable systems. In the con­

text of ODBMSs, standardization activity is on-going in the areas of object model[45, 

123], object data management[45, 122], and object query language[29, 46, 146]. In 

this section, we describe the two major efforts in the standardization of OQLs: SQL.3 

and ODMG. 

A.6.1 SQL3 

National and international SQL standardization committees have been working 

on the extensions of SQL to meet the requirements of managing complex objects 
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in engineering and multimedia environments[146]. These extensions include object 

identifiers, abstract data types, inheritance hierarchies, and other features normally 

associated with object data management. This extended version of SQL is commonly 

referred to as SQL3. The historical definition of an object is a row in a relational 

table. SQL3 carries this concept forward and adds two new types of rows. Therefore, 

we have three types of objects in SQL3: a row in a table with no object identifier, an 

SQL3 row with an object identifier not visible to users, and an SQL3 row with object 

identifier visible to users as the first column of the table containing the row. An object 

type can be defined as an abstract data type (ADT). An ADT definition includes 

the definitions of attributes, operations, subtypes, and object identifier. Common 

object-oriented features like encapsulation, subtypes, inheritance, and polymorphism 

are supported in SQL3. 

Currently, all object manipulations in SQL3 are achieved through table opera­

tions. SQL3 allows specification of a "tabular" shell over an ADT class. Constructor 

and destructor functions are automatically invoked when rows are inserted or deleted 

from the table. The table itself is the collection of all objects. Therefore, SQL query 

and update statements may then be applied to the table without any language en­

hancements. SQL3 does not describe how to integrate with programming languages. 

SQL3 is a computationally complete language for the definition and manage­

ment of persistent objects. SQL functions are completely defined in SQL. External 

functions have their interface definitions specified in SQL and allow their implemen­

tations to be written in programming languages. The control structures of SQL3 

include compound statement, exception handling, and flow control statements. 
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A.6.2 ODMG 

The Object Database Management Group (ODMG) is a consortium of ODBMS 

companies whose goal is to establish an industry-wide agreement for object-oriented 

database technology. ODMG-93, the Object Database Standard, is the result of 

the work by ODMG[29]. The object model of ODMG-93 has been described in 

Section A.3.1. Since ODMG-93 is only a standard specification, how the object 

model is supported in a specific ODBMS will depend on the actual implementation. 

In ODMG-93, a query consists of a set of query definition expressions followed by 

an expression. The semantics of the query model has been described in ODMG-93 

although the query processing remains an implementation-dependent issue. 

ODMG-93 has an ODL and an OQL. ODMG-93 ODL is a specification language 

used to define the interface to object types that conform to the ODMG object model. 

ODL is independent of any programming language. It is also compatible with the 

OMG's Interface Definition Language (IDL). Therefore, the application object model 

defined by ODL can be shared by multiple programming languages. How a specific 

programming language is able to use the object types defined by ODL depends on 

the binding of that programming language to the ODL. 

ODMG-93 OQL is not computationally complete. It has an abstract syntax and 

provides declarative access to an object database. ODMG-93 OQL has one concrete 

syntax which is SQL-like. Another concrete syntax may be defined for merging the 

query language into programming languages. The OQL does not provide u])date 

operators. It relies on operations defined on objects for updates. The semantics 

of ODMG-93 OQL allow a collection to be constructed from a set of query expres­

sions. This implies that a heterogeneous aggregate can be constructed. Since the 
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constructed aggregate can then be queried, it is possible to issue a query against 

several type extents. 

A.6.3 Analysis 

The standardization of OQLs sparks a number of interesting issues especially 

when the standardization activities appeared to be an aftermath since many OQLs 

have already been implemented. Several ODBMS vendors have committed to either 

implementing or adjusting exist implementations to accommodate the OQL proposed 

by ODMG[29]. There are also companies who have started to adopt SQL3 in the 

development of multimedia data management[89]. Although we have no clue as to 

which standard will prevail or whether both standards will co-exist, it is worthwhile 

to explore a number of standard issues related to OQL standards and existing OQLs. 

For example, some existing OQLs take the approach of extending the SQL. It is 

interesting to know what SQL features are supported and what extensions have been 

made. Then we can evaluate whether the OQL will be able to accommodate or at 

least interoperate with existing OQL standards. Furthermore, the standardization 

of OQLs will have an impact on the integration and interoperation of distributed 

heterogeneous DBMSs. How the existing OQLs will provide room for multidatabase 

integration and interoperation remains an open problem. 
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APPENDIX B. THE SPECIFICATIONS OF THE Z M S  IN IDL 

B.l Introduction 

In this appendix, we provide the high-level specifications of the Z M S  written 

in CORBA IDL[122]. We intend to use these specifications to provide a complete 

description of the high-level ZM.S design. There is a direct correspondence between 

the ZMS class hierarchy and the IDL specifications. Each IDL interface defini­

tion corresponds to a class definition in the ZMS class hierarchy. IDL is declara­

tive, object-oriented, and independent of programming languages. The declarative-

ness, object-orientation, and simplicity of IDL make it appropriate for specifying the 

ZMS. Figure B.l shows the major components of a CORBA IDL implementation. 

The IDL front-end generates abstract syntax graphs on behalf of IDL source files. 

Abstract syntax graphs are independent of programming languages. The emitters of 

the IDL back-end take the abstract syntax graphs and generate output stubs bound 

to the programming language associated each emitter; e.g., the emitter for the C 

programming language will generate output stubs as C header files and C source 

files. How the IDL specifications lead to the actual system implementation can be 

summarized as a sequence of mappings: 

PL-independent  hnplementat ion-dcpendeni  
, " \ s 

class IDL {stub, skeleton, template) — {stub, skeleton, expanded -  template) 
/ 

PL-speciJ ic  
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IDL 
Source file 

IDL 
Parser 

Abstract 
syntax graph 

/p 
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Emitter ] 
Output 
stubs • c++ 

Emitter Output 
stubs 

• Language Front-end Language Back-end 

Figure B.l; CORBA IDL. 

The stub, skeleton and template files are commonly referred to as the IDL output 

stubs. The skelton files are used by the template files. The stub files are used by the 

client programs that need to use the class specifications defined by the stub files. The 

template files are expanded to provide implementations for the operations defined in 

the IDL source files. The same template file may be expanded in different ways. The 

resulting expanded template can be compiled and linked with the client programs 

that have included the corresponding stub files. For the remainder of this appendix, 

we will provide IDL specifications for major ZM.S components and describe our 

design in the context of these IDL specifications. 

B.2 ZVS Object, ZMS &; ZMS Manager 

All the runtime components of the ZMS are instances of subclasses of ZVSOb-

ject. The common attribute, LCE, provides links to the local computing environment 

hosting the runtime component. The two common operations, startup() and shut-

down(), are defined to determine how to start and stop the runtime component in a 

controlled manner. 
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// IDL source file: ZVSObject.idl 

«include <ZVSLCE.idl> 

«include <ZMSGlobalDecl.idl> 

interface ZVSObject 

{ 

readonly attribute long ID; 

readonly attribute ZVSLCE LCE; \\ point to a ZVSLCE object 

readonly attribute ZVSServiceType ST; 

ReturnCode startup(); 

ReturnCode shutdownO ; 

>; 

A ZMSystem object coordinates the initialization and termination of a multidatabase 

system. During the ZMS initialization, the system configuration is loaded and ma­

jor ZMS runtime components are started in a pre-specified sequence. The system 

configuration is defined in a SysConfig structure. The operation, Load(), is called 

to load the system configuration to the main memory. Once the system is started, 

a simple command interface can be called up to manage the system configuration. 

The command table is saved in the structure pointed to by the attribute, CmdTbl. 

The command interface is invoked by the operation, ZMSCmdlnterface(). When the 

ZMS is terminated or needs to be restarted, the operation, Save(), is called to up­

date the system configuration files. 

// IDL source file: ZMS.idl 

«include <ZVSObject.idl> 
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#include <ZVSServer.idl> 

#include <HostManager.idl> 

#include <CooperatingAgent.idl> 

#include <SysConfig.idl> 

#include <ZVSManager.idl> 

interface ZMSystem : ZVSObject, ZVSManager 

{ 

// attribute ZVSLCE LCE; // inherited from ZVSObject 

// readonly attribute CommandTableEntry CradTbl; // inherited 

// readonly attribute short NumOfCmds; // inherited 

attribute ZVSServer Server; 

attribute HostManager HH; 

attribute CooperatingAgent CA; 

readonly attribute SysConfig SC; // point to the SysConfig structure 

// startup0 and shutdown() are inherited from ZVSObject 

ReturnCode LoadO; 

void SaveO; 

void ZMSCradlnterf aceO ; 

>: 

The system configuration information includes the lists of running ZM.S compo­

nents, the list of the ZMS view repositories, and the locations of system configura­

tion files. The operation, LoadSysConfig, loads the system configuration to the main 

memory. The operation, SaveSysConfig follows the path defined in SysFilePath and 

saves the system configuration to the secondary storage. The operation. Management, 

starts a user interface that provides management facilities for managing the system 

configuration. ServerList is a subclass of List and ZVSServer. HostManagerList is a 

subclass of List and HostManager. CoopAgentList is a subclass of List and Cooper­

atingAgent. Operations defined for List include common utilities like insert, remove, 

update, search, etc. The semantics of these operations are specialized in ServerList. 
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The same is true for both HostManagerList and CoopAgentList. It is possible to define 

a gereric list structure for all kinds of lists. However, we chose to define a generic 

list and specialize it for different kinds of lists to keep the specifications more readable. 

// IDL source file: ZVSSysConfig.idl> 
#include <ZVSLCE.idl> 
// #include <List.idl> 
#include <ServerList.idl> // not included in the specialization 
#include <HostManagerList.idl> // not included in the specialization 
#include <CoopAgentList.idl> // not included in the specialization 
#include <ZMSViewRepositoryList.idl> 

interface SysConfig 
{ 

readonly attribute ZVSLCE 
readonly attribute ServerList 
readonly attribute HostManagerList 
readonly attribute CoopAgentList 
readonly attribute List 

env; 
Server; 
HostManager; 
CoopAgent; 
SysFilePath; 

readonly attribute ZMSViewRepositoryList ZVSRL; 

void LoadSysConfig(in env); 
void Management(in env); 
void SaveSysConfig(in env); 

// A management interface 

} ;  

The Z M S  has a client-server architecture. The interactions between clients and 

servers  fol low pre-establ ished contract /protocol .  Most  of  the  servers  in  the ZM.S 

are modeled as instances of the subclasses of ZVSManager. ZVSManager is an ab­

stract class that provides a template for describing servers and the contract between 

clients and servers. 
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// IDL source file: ZVSManager.idl 
#include <ZVSRequest.idl> 
#include <ZVSLCE.idl> 
#include <ZMSGlobalDecl.idl> 

interface ZVSManager 
{ 

readonly attribute CommandTableEntry CmdTbl; 
// point to the command table 

readonly attribute short NumOfCmds; 
readonly attribute ZVSServiceType ST; 

ReturnCode Dispatch(in ZVSLCE env, 
in short Destiny, 
in ZVSRequest request); 

ReturnCode ReceiveRequest(in ZVSLCE env, in ZVSRequest request); 
ReturnCode RespondRequest(in ZVSLCE env, out ZVSRequest response); 

>; 

Some managers are implemented as multi-service network servers which may invoke 

or request services from other network servers on behalf of a request. The invocation 

is done through the operation, Dispatch. Each manager has a command table that 

defines the command syntax for client requests and server responses. Notice that in 

the context of the ZMS, the client requests are referred to as the messages/requests 

from any system component that is able to send messages/requests to network servers. 

B.3 ZMS Server 

A Z M S  server is an instance of ZVSServer. ZVSServer, has five subclasses 

which define the five subordinate managers of a ZMS server: ClientMgr, CoopA-

gentMgr, ThreadMgr, ViewMgr, and TransactionMgr. A ZVSServer object coordinates 
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the start-up and shutdown of its subordinate managers. As soon as the targets of 

incoming requests are identified, the requests are dispatched to appropriate subor­

dinate managers for further processing. The attribute, Service, defines the specific 

service provided by the ZM.S server or its subordinate managers. The attribute. 

Cell, identifies the administrative domain that hosts the the ZM.S server. 

// IDL source file: ZVSServer.idl 
#include <ZVSObject.idl> 
#include <ZVSManager.idl> 
#include <ClientMgr.idl> 
#include <CoopAgentMgr.idl> 
#include <ThreadMgr.idl> 
#include <ViewMgr.idl> 
#include <TransactionHgr.idl> 

interface ZVSServer : ZVSObject, 
{ 

ZVSManager 

// attribute ZVSLCE 
// attribute ZVSServiceType 
readonly attribute string 
readonly attribute string 

LCE; // inherited from ZVSObject 
ST; // inherited from ZVSManager 

Service[NameSize]; 
Cell[NameSize]; 

attribute ClientMgr CM; // pointer 
attribute CoopAgentMgr CAM; // pointer 
attribute ThreadMgr TM; // pointer 
attribute ViewMgr VM; // pointer 
attribute Trans act ionMgr TRM; // pointer 

// Dispatch(in short Destiny, in ZVSRequest request); 
// inherited from ZVSManager 

} ;  

A ClientMgr object maintains a hnk with liost managers or remote ZAiS servers from 

which the requests are issued. The request is processed based on the command table 
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associated with ClientMgr. There are four types of client requests originated from in­

stances of ClClient, C2Client, ParticipatingDBMS, and RemoteZVSServer respectively. 

The requests from a ParticipatingDBMS object is handled by a CoopAgentMgr object. 

Other types of requests are handled by the ClientMgr object. 

// IDL source file: ClientMgr.idl 
#include <ZVSServer.idl> 

interface ClientMgr : ZVSServer 
{ 

attribute ZVSServer server; // back pointer 
>: 

A CoopAgentMgr object maintains a link with the cooperating agent that previously 

sent requests/messages to the ZM.S server. Most of these requests/messages are 

originally resulted from the 2MS clients and the ZM.S threads. The CoopAgent­

Mgr object processes the requests/messages and contact the thread manager to take 

appropriate actions; e.g. abort the thread, commit the thread, contact the requesting 

client, etc. 

// IDL source file: CoopAgentMgr.idl 
#include <ZVSServer.idl> 

interface CoopAgentMgr : ZVSServer 
{ 

attribute ZVSServer server; // back pointer 
} ;  
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A thread is a single sequential flow of control. The thread utility allows multiple 

l ightweight  threads to  run concurrent ly  within a  s ingle  address  space.  In  the ZM.S,  

we support the notion of threads to implement concurrency in a distributed system. 

We have discussed the semantics of the ZM.S threads in previous sections. Thread-

Mgr specifies the facilities for managing a list of threads. The operation, split, handles 

the case when a ZMS thread has to be divided into two individual threads. 

// IDL source file: ThreadMgr.idl 
#include <ZVSServer.idl> 
#include <ThreadList.idl> 

interface ThreadMgr : ZVSServer 
{ 

attribute ZVSServer server; // back pointer 
attribute ThreadList TL; 

ReturnCode open(in ZVSLCE env, in Thread thread); 
ReturnCode split(in ZVSLCE env, in Thread thread); 
ReturnCode close(in ZVSLCE env, in Thread thread); 
ReturnCode abort(in ZVSLCE env, in Thread thread); 

} ;  

A ViewMgr object manages a Zeus view repository. The Z M S  system configura­

tion information includes a list of ZM.S view repositories. VIewMgr defines common 

operations on Zeus views; e.g., creation, deletion, update, etc. A Zeus view may 

be moved to another view repository through the migrate operation. The operation, 

find, can be used to look up and retrieve a Zeus view. The ViewMgr object also 

handles the mappings of Zeus view objects to CORBA objects which are stored as 
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view objects. 

// IDL source file: ViewMgr.idl 
#include <ZVSServer.idl> 
#include <ZMSViewRepository.idl> 

interface ViewMgr : ZVSServer 
{ 

attribute ZVSServer server; // back pointer 
attribute ZMSViewRepository VR; // pointer 

ReturnCode create(in ZVSLCE env, in ZMSView view); 
ReturnCode remove(in ZVSLCE env, in ZMSView view); 
ReturnCode update(in ZVSLCE env, in ZMSView view); 

ReturnCode migrate(in ZVSLCE env, 
inout ZMSView view, 
in ZMSViewRepository toVR); 

ZMSView find(in ZVSLCE env, in long ID); 

ReturnCode map(in ZVSLCE env,in ZMSView view,out ZMSView CORBAObject); 
} ;  

The Zeus View Aiechanism ( 2 V A 4 )  defines how the Z M S  requests are processed. 

Although the actual syntax and semantics of the ZMS request are still under inves­

tigation, we have proposed a two-step mapping along with a computation model that 

define the overall skeleton for processing the ZMS requests. Part of the computation 

model is the semantics of a ZMS transaction. The attribute, SR, defines the syntax 

rule for interpreting a ZMS transaction. 
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// IDL source file: TransactionMgr.idl 
#include <ZVSServer.idl> 
#include <ZMSTransactionList.idl> 
// #include <ZMSTransaction.idl> 
#include <ZMSGlobalDecl.idl> 

interface TransactionMgr : ZVSServer 
{ 

attribute ZVSServer server; // back pointer 
attribute ZMSTrans act ionL ist TL; 
attribute SyntaxRule SR; 

ReturnCode BeginTransaction(in ZVSLCE env, in ZMSTransaction tr); 
ReturnCode AbortTrans act ion(in ZVSLCE env, in ZMSTransaction tr); 
ReturnCode EndTransaction(in ZVSLCE env, in ZMSTransaction tr); 

>: 

B.4 ZMS Client 

There are four types of ZM.S chents; ClClient, C2Client, RemoteZVSServer, and 

ParticipatingDBMS. Instances of ClClient, i.e., Cl ZM.S chents, provide services for 

the management of views include the creation, deletion, update, browsing and in­

stal la t ion of  views in  the view reposi tory.  In  addi t ion to  these services ,  Cl  ZM.S 

clients also accept requests for generating IDL modules and language mappings for 

Zeus views. Since each Zeus view carries the information about what resources are 

accessible through the view, users can look up what global resources are available by 

browsing views via Cl ZM.S clients. Instances of C2Client, i.e., C2 ZA4S clients 

provide services for users to access global resources through views. There are several 

alternatives to deliver the services provided by C2 ZMS clients, e.g., global query 

language, query translation, interactive query interface, application program inter­

face (API), and so on. Instances of RemoteZVSServer are proxy objects which are 
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created on behalf of a remote Z M S  server in order to process the requests resulting 

from remote hosts. Instances of ParticipatingDBMS are closely integrated with par­

ticipating DBMSs while providing a link to the 2A4S. 

II IDL source file: ZVSClient.idl 
#include <ZVSObject.idl> 
#include <ZVSManager.idl> 

interface ZVSClient : ZVSObject, 
{ 

// attribute ZVSLCE 
// attribute ServiceType 

} ;  

ZVSManager 

LCE; // inherited from ZVSObject 
ST; 

A CI ZAiS client has a list of associated view repositories and an associated user 

interface. Both CI and C2 ZMS clients are subclasses of ZVSManager. Therefore, 

they do not have to run on the same host as that of the host manager and they may 

h a v e  t h e i r  o w n  s y n t a x  f o r  c o m m u n i c a t i n g  w i t h  t h e  Z M S .  

U IDL source file: ClClient.idl 
#include <ZVSClient.idl> 
#include <ZMSViewRepositoryList.idl> 

interface ClClient : ZVSClient 
{ 

attribute ZMSViewRepositoryList VRL; 

void UserlnterfaceO ; 
} ;  
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// IDL source file: C2Client.idl 
#include <ZVSClient.idl> 

interface C2Client : ZVSClient {}; 

RemoteZVSServer is also a subclass of ZVSManager. The attribute, CmdTbl, of Re-

moteZVSServer is inherited from ZVSManager and defines how the proxy object of a 

R e m o t e Z V S S e r v e r  o b j e c t  i n t e r a c t s  w i t h  t h e  Z M S .  

II IDL source file: RemoteZVSServer.idl 
#include <ZVSClient.idl> 
ttinclude <DirectoryServices.idl> 

interface RemoteZVSServer : ZVSClient 
{ 

attribute string RemoteCell[NameSize]; 
attribute string ReraoteHost; 
attribute Connection link; // Directory services 

>: 

A ParticipatingDBMS object runs on the same host as that of its associated DBMS. 

Since ParticipatingDBMS is a subclass of ZVSManager, it inherits from ZVSManager 

a command interface for interacting with the 2MS. The interactions between a 

ParticipatingDBMS object and DBMSs are derived through the refinement of domain 

frameworks. 
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// IDL source file: ParticipatingDBMS.idl 
#include <ZVSClient.idl> 

interface ParticipatingDBMS : ZVSClient 
{ 

attribute string DBMSType; 
attribute string DBHShost; 

}; 

B.5 ZMS Agent 

The Z M S  agents sit between the Z M S  server and participating DBMSs/clients. 

There are two types of ZMS agents which are subclasses of ZVSAgent; i.e., Host-

Manager and CooperatingAgent. ZVSAgent is an abstract class. 

// IDL source file: ZVSAgent.idl 
#include <ZVSObj ect.idl> 
#include <ZVSManager.idl> 

interface ZVSAgent : ZVSObject, ZVSManager {}; 

B.5.1 ZMS Host Manager 

The Z M S  host managers are instances of HostManager. HostManager has three 

subclasses: ClientMgr, ServerMgr, and CoopAgentMgr. ClientMgr has one subclass: 

ClientMemoryMgr. A HostManager object is a multi-service network server. Incoming 

messages/requests are dispatched to appropriate subordinate managers for further 

processing. 
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// IDL source file: HostHanager.idl 
#include <agent.idl> 
#include <HM-ClientMgr.idl> 
#include <HM-ServerMgr.idl> 
#include <HM-CoopAgentMgr.idl> 

interface HostManager : ZVSAgent 
{ 

// attribute ZVSLCE LCE; // inherited from ZVSObject 
attribute ClientMgr CM; 
attribute ServerMgr SM; 
attribute CoopAgentMgr AM ; 

} ;  

Instances of ClientMgr interact with clients, host managers, and client memory man­

agers. Since ClientMgr is a subclass of ZVSManager, a ClientMgr object is also a 

network server that is able to send/receive messages/requests. The requests that are 

routed to a ClientMgr object may come from the ClientMgr object on another host. 

These requests are originated from CI 2MS clients, C2 ZMS clients, or remote 

2MS servers. 

// IDL source file: HM-ClientMgr.idl 
#include <HostManager.idl> 

interface ClientMgr : HostManager 
{ 

// attribute ZVSLCE LCE; // inherited from ZVSObject 
attribute HostMemager HM; // back pointer 
attribute ClientMemoryMgr CMM; 

} ;  
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The client memory manager makes the retrived data available to the requesting client. 

The client memory manager is an instance of ClientMemoryMgr. Client-side cache 

management is part of the responsibilities of ClientMemoryMgr objects for handling 

large objects. The operation, Load, allocates a memory buffer for the data to be 

made available to clients and returns a pointer to that buffer. 

// IDL source file: HM-ClientMemoryMgr.idl 

#include <HM-ClientMgr.idl> 

interface ClientMemoryMgr : ClientMgr 

{ 

attribute ClientMgr CM; // back pointer 

void Load(in ZVSLCE env, in void dataptr); // return a pointer 

>: 

A ServerMgr object is a subordinate manager of a host manager. A ServerMgr ob­

ject interacts with the ZMS server on behalf of a host manager. Suppose a local 

ClientMgr object wants to send a message to the ZMS server. The message is sent 

to a local host manager first. The host manager dispatches the message to a local 

ServerMgr object. The ServerMgr object then establishes a connection and sends the 

message to the ZM.S server. 

// IDL source file: HM-ServerMgr.idl 

#include <HostManager.idl> 

interface ServerMgr : HostManager 

{ 
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attribute HostManager HM; // back pointer 

>; 

A CoopAgentMgr object is a subordinate manager of a host manager. A CoopAgent-

Mgr object interacts with cooperating agents on behalf of a host manager. Suppose 

a CoopAgentMgr object wants to send a message to a ParticipatingDBMS object, the 

message is sent to a local host manager first. The host manager then dispatches 

the message to a cooperating agent which relays the message to a DBMSAgent ob­

ject. The DBMSAgent object may create a portal based on the message. The portal 

communicates with a ParticipatingDBMS object and sends the response back to the 

requesting CoopAgentMgr object. 

// IDL source file: HM-CoopAgentMgr.idl 

#include <HostManager.idl> 

interface CoopAgentMgr : HostManager 

{ 

attribute HostManager HM; // back pointer 

} ;  

B.5.2 ZMS Cooperating Agent 

The ZM.S Cooperating Agent, CooperatingAgent, is the root of the database 

framework. CooperatingAgent has three subclasses; DBMSAgent, ServerAgent, and 

ClientAgent. Instances of CooperatingAgent are multi-service network servers that 

send/receive messages and dispatch requests to their subordinate managers. Each 
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cooperating agent maintains a list of associated DBMS agents. 

// IDL source file: CoopAgent.idl 

#include <ZVSAgent.idl> 

«include <CA-ServerAgent.idl> 

#include <CA-ClientAgent.idl> 

#include <DBMSAgentList.idl> 

interface CooperatingAgent : ZVSAgent 

{ 

attribute ServerAgent SA; // pointer 

attribute ClientAgent CA; // pointer 

attribute DBMSAgentList DBMSs; 

>: 

A DBMS agent is specific to a DBMS. A DBMS agent is an instance of DBMSAgent 

that defines the associated templates and the operations for manipulating templates 

and portals. Notice that we may create a user interface for the management of DBMS 

templates. Such a user interface can be created as a C2 ZM.S client. 

// IDL source file: DBMSAgent.idl 

#include <coopAgent.idl> 

// #include <Teraplate.idl> 

#include <TemplateList.idl> 

#include <Portal.idl> 

#include <ZMSView.idl> 

interface DBMSAgent : CooperatingAgent 

{ 

attribute CooperatingAgent CA; // back pointer 

attribute TemplateList templates; 

ReturnCode CreateTemplate(in ZVSLCE env, inout Template template); 
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ReturnCode DeleteTemplate(in ZVSLCE env, inout Template template); 

ReturnCode UpdateTemplate(in ZVSLCE env, inout Template template); 

ReturnCode SaveTemplate(in ZVSLCE env, inout Template template); 

ReturnCode RestoreTemplate(in ZVSLCE env, inout Template template); 

ReturnCode CreatePortal(in ZVSLCE env, 

inout Template template, 

in ZMSView view, 

out Portal portal); 

A DBMS may prov Je multiple interfaces by defining multiple templates. A template 

models a generic interface that can be used to automate the generation of the DBMS 

access routines, i.e. portals, based on a user-defined view. The result is a customized 

interface to the DBMS tailored to the requirements of a specific application. The 

operation, TemplateToPortal, generates a customized interface for a Zeus view. The 

generated interface can be used to create portals. 

// IDL source file: Template.idl 

#include <DBMSAgent.idl> 

#include <Portal.idl> 

interface Template : DBMSAgent 

{ 

attribute DBMSAgent agent ; 

attribute DBMSType DT; 

attribute void specification; 

attribute void TemplateStore; 

// back pointer 

// pointer 

ReturnCode TemplateToPortal(in ZVSLCE env, 

in ZMSView view, 

out Portal portal); 

>: 



www.manaraa.com

184 

A portal is a runtime entity that executes the instructions for sending requests to 

and receiving data from a DBMS. The application semantics embedded in a portal is 

derived from the Zeus views involved in a request. The operation, run, implements 

the runtime application semantics. 

// IDL source file: Portal.idl 

#include <DBMSAgent.idl> 

#include <ParticipatingDBMS.idl> 

#include <Template.idl> 

interface Portal : DBMSAgent 

{ 

attribute DBMSAgent agent; // back pointer 

attribute Template template; // back pointer 

attribute ParticipatingDBMS contact; 

ReturnCode run(in ZVSLCE env); 

>; 

A ServerAgent object interacts with a ZAiS server on behalf of a cooperating agent. 

// IDL source file: CA-ServerAgent.idl 

#include <CoopAgent.idl> 

interface ServerAgent : Cooperating Agent 

{ 

attribute CoopérâtingAgent CA; // back pointer 

} ;  
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A ClientAgent object interacts with a Z M S  client on behalf of a cooperating agent. 

// IDL source file: CA-ClientAgent.idl 

#include <CoopAgent.idl> 

interface ClientAgent 

{ 

attribute CoopérâtingAgent CA; // back pointer 

} ;  

B,6 ZMS Environment 

The ZM.S environment refers to the computing environment of a certain ZM.S 

component. The class, ZVSLCE, is used to model the ZMS environment. Instances 

of ZVSLCE provide links to access the services of the hosting computing environment. 

We have identified four major components of the ZÀ4S environment: network ser­

vices, operating system services, object recjuest broker, and persistent object store. 

// IDL source file: ZVSLCE.idl 

#include <ZMSGlobalDecl.idl> 

interface ZVSLCE 

{ 

attribute short ID; 

attribute NetworkServices NS; 

attribute OperatingSystemServices OS; 

attribute ObjectRequestBroker ORB; 

attribute PersistentObjectStore 

attribute HostType 

// identifier 

// pointer 

// pointer 

// pointer 

POS; // pointer 

HT; 
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attribute string HostName[NaineSize] ; 

} ;  

B.6.1 Network Services 

There are three major network services: name service, object transfer, and re­

mote method invocation. The name service provides two levels of name services; the 

name service in the context of the 2A4S, and the name service for common network 

services. The object transfer and remote method invocation support the object-level 

network services  required by the ZM.S.  

// IDL source file: NetworkServices.idl 

«include <ZVSLCE.idl> 

interface NetworkServices : ZVSLCE 

{ 

attribute ZVSLCE env; // back pointer 

attribute NameService NS; 

attribute ObjectTransferMgr OTH; 

attribute RMIMgr RMIM; 

} ;  

We group common network services in NameService. NameService defines the at­

tributes that point to common network services. These network services may be 

provided as application program interfaces (APIs). The specifications of Directory-

Services, SecurityServices, TimeServices and FileServices are not included in our current 

specification. We have two alternatives to determine the specifications of these com­

mon network services. First of all, we may continue to abstract conmionalities from 
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different implementations of these network services. Secondly, we may abstract spec­

ifications from a specific implementation. The operation, search, can be used to find 

an entity in a ZM.S by giving a name following the ZM.S naming convention. 

// IDL source file: NameService.idl 

#include <NetworkServices.idl> 

#include <DirectoryServices.idl> 

#include <SecurityServices.idl> 

#include <TiraeServices.idl> 

#include <FileServices.idl> 

#include <ZMSGlobalDecl.idl> 

#include <ZMSystem.idl> 

interface NameService : NetworkServices 

{ 

attribute Cell domain; 

attribute DirectoryServices DS; // pointer 

attribute SecurityServices SS; // pointer 

attribute TimeServices TS; // pointer 

attribute FileServices FS; // pointer 

>; 

void search(in ZHSystem system, in string name); 

ObjectTransferMgr specifies the object transfer interface. The operations, send and 

receive, support the transfer of typed object. The operation, pipe, implements a pipe 

mechanism that supports reliable transfers of large objects. The pipe mechanism can 

be used when the transfer is required for large quantities of data, data of unknown 

size that cannot fit in memory, or data incrementally produced and not in memory 

all at once. 
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// IDL source file: ObjectTransferMgr.idl 

«include <ZVSLCE.idl> 

#include <NetworkServices.idl> 

#include <Pipe.idl> 

interface ObjectTransferMgr : KetworkServices 

{ 

attribute ZVSLCE env; // back pointer 

ReturnCode send(in ZVSLCE env, incut void object); 

ReturnCode receive(in ZVSLCE, in void object); 

ReturnCode CreatePipe(in ZVSLCE, inout void object, inout Pipe pipe); 

} ;  

There are two types of pipes: input pipe and output pipe. An input pipe supports 

the transfer of data from a client to a server. An output pipe supports the transfer 

of data from a server to a client. The operation, pull, is used by an input pipe. The 

operation, push, is used by an output pipe. The operation, allocate, allocates the 

memory buffer for the chunk of data transferred. The attribute, PS, defines the pipe 

state that is specific and local to either the client or the server side. 

// IDL source file: Pipe.idl 

#include <ZMSGlobalDecl.idl> 

interface Pipe 

{ 

readonly attribute void PS; // pipe state 

readonly attribute PipeType PT; 

ReturnCode pull(void object); 

ReturnCode push(void object); 

void allocateO; 
} ;  
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The remote method invocation service supports the invocation of methods associated 

with the objects on remote hosts. A remote method must be be registered with the 

local ZM.S via the register operation. The operation, open, creates a connection with 

a remote agent that will execute the method called by the following invoke operation. 

// IDL source file: RMIMgr.idl 

«include <ZVSLCE.idl> 

«include <NetworkServices.idl> 

«include <ZMSGlobalDecl.idl> 

interface RMIMgr : NetworkServices 

{ 

attribute ZVSLCE env; // back pointer 

ReturnCode register(in ZVSLCE env, in RemoteMethod RM); 

ReturnCode open(in ZVSLCE env, inout void RemoteAgent); 

ReturnCode invoke(in ZVSLCE env, in RemoteMethod RM); 

>: 

B.6.2 Operating System Services 

The class, OperatingSystemServices, specifies the operating system services re­

quired by the ZMS. How these services are implemented is not a major concern 

in the development of the ZMS. We classify high-level operating system services 

in four categories: Process Management, Memory Management, I/O Subsystem, and 

Interprocess Communication. Process Management includes the control and schedul­

ing of processes. Memory Management includes the allocation of main memory for 
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running processes, or the allocation of secondary memory, e.g. file systems. I/O Sub­

system manages controlled access to peripheral devices. Interprocess Communication 

provides mechanisms for arbitrary processes to exchange data and synchronize exe­

cution. The above services are not included in our specifications. Operating system 

services are part of the environment framework. A subclass of OperatingSystem-

Services that corresponds to a specific operating system on a certain platform can 

be derived through refinement and specialization of OperatingSystemServices. The 

thread utility should be included as part of ProcessMgmt. 

// IDL source file: OperatingSystemServices.idl 

#include <ZVSLCE.idl> 

#include <ProcessMgmt.idl> 

#include <IOSubsystem.idl> 

#include <InterProcessComin.idl> 

interface OperatingSystemServices : ZVSLCE 

{ 

attribute ProcessMgmt PM; // pointer 

attribute MemoryMgmt MM; 

attribute lOSubsystem lOS; 

attribute InterPorcessComm IPC; 

} ;  

B.6.3 Object Request Broker 

The design of the Z M S  requires that the hosts of all the ZM.S components 

must be running an object request broker. Since there are different implementa­

tions of CORBA, we provide a class, ObjectRequestBroker, to describe the common 

features of object request brokers. The interface object. Interoperability, defines inter­

operability issues at the levels of communications, binding, interface references, and 
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interception[131]. We assume that ORB.idI, InterfaceRepository.idI, and Interoperabil­

ity, id I are provided as part of the object request broker. 

// IDL source file: ObjectRequestBroker.idl 

#include <ORB.idl> 

#iiiclude <InterfaceRepository. idl> 

#include <Interoperability.idl> 

interface ObjectRequestBroker ; ZVSLCE 

{ 

attribute ORB orb; 

attribute InterfaceRepository *IR; 

attribute Interoperability INTOPR; 

>: 

B.6.4 Persistent Object Store 

Persistent object stores are used in the ZM.S to support the save/restore of 

objects of any type or complexity. PersistentObjectStore has its own command syntax 

defined in the attribute, CmdTbl. We use void as the type for parameters in several 

occasions where there are two other possible alternatives. First of ail, we may have 

used parameterized type if it were supported in CORBA IDL. Secondly, we may pro­

vide an exhaust list of signatures for the same operation such that all possible types 

are covered for a specific parameter although this is not a good solution. 

// IDL source file: zvspos.idl 

#include <ZVSLCE.idl> 

#include <ZHSGlobalDecl.idl> 
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interface PersistentObjectStore : ZVSLCE 

{ 

// attribute ZVSLCE LCE; inherited from ZVSObject 

readonly attribute CommandTableEntry CmdTbl; 

ReturnCode startupO; 

ReturnCode shutdown(); 

ReturnCode Parser(in ZVSLCE env, in ZVSRequest request); 

ReturnCode POSSetObjectID(in ZVSLCE env, void objectID); 

ReturnCode POSStoreObject(in ZVSLCE env, inout void dataptr); 

ReturnCode POSRestoreObj ect(in ZVSLCE env, inout void path); 

ReturnCode POSFindObject(in ZVSLCE env, void objectID); 

ReturnCode CheckError(in ZVSLCE env); 

B.7 Miscellany 

B.7.1 Global Declarations 

The interface, ZMSGIobalDecl, inchides global declarations used by other IDL 

source files. ZVSServiceType defines the names of all ZM.S service types provided. 

ReturnCode defines the Zj\AS-spec\i\c messages that may initiate other event han­

dling routines. 

// IDL source file: ZMSGIobalDecl.idl 

interface ZMSGIobalDecl 

{ 

const short NameSize = 64; 

enum ZVSServiceType {Server, 

ClClient, C2Client, 
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RemoteServer, ParticipatingDBMS, 

HostManager, 

CoopérâtingAgent}; 

enum ViewType {Localinterface, BaseView, View, Subscribed}; 

enum ReturnCode { 

ServerBusy, 

ConnectionLost 

} ;  

// No server available 

// Lost connection 

enum TransactionStatusType {Succeed, Fail, Aborted}; 

enum ThreadStatus { 

Active, 

Completed, 

Aborted 

} ;  

// The thread is still active. 

// The thread has been completed. 

// The thread is aborted. 

enum ThreadElementType { 

CI, 

C2, 

RemoteServer, 

ParticipatingDBMS, 

} ;  

enum HostType { 

DEC5000, 

AS400 

enum PipeType { 

input, 

output 

} ;  

struct CommandTableEntry { 

string CommandName; 

short CommandFunction; // pointer 

string Help; 

string Syntax; 

/ /  
/ /  
/ /  
/ /  
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struct ReraoteMethod { 

void object; 

string method; 

} ;  

typedef time long; 

typedef TypeRelations string; 

typedef SyntaxRule string; 

typedef Cell string; 

} ;  

B.7.2 ZMS Views & View Repository 

There are four types of ZM.S views: local interface, base view, view, and sub­

scribed view. We have provided formal definitions for these ZM.S views in Chapter 

3. Each view has an identifier assigned by the ZMS. At runtime, a view is address­

able via a pointer. The attribute, DataToRetrieve, describes the data to be retrieved 

from participating DBMSs. The attribute. Structure, describes the structure that will 

host the retrieved data. The attribute, Metalnfo, contains the meta information of 

views. 

// IDL source file: ZMSView.idl 

#include <ZMSGlobalDecl.idl> 

ttinclude <ZMSViewRepository.idl> 

interface ZMSView 

{ 

attribute long ID; 

attribute string name[NameSize]; 

attribute ViewType VT; // local interface, base view, view, 

// or subscribed view 

attribute string DataToRetrieve; 
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attribute short 

attribute string 

attribute short 

attribute string 

attribute short 

// describe the data to be retrieved 

DTRsize; // size of DataToRetrieve 

Structure;// describe the structure to host data 

SSize; // size of Structure 

Metalnfo; // Meta information; e.g., manual 

MISize; // size of Metalnfo 

attribute TypeRelations TR; // pointer 

attribute ViewRepository VR; // back pointer 

ReturnCode create(in ZMSView view); 

ReturnCode delete(in ZMSView view); 

ReturnCode update(in ZMSView view); 

The 2 M S  view repositories stores Zeus views in a persistent object store. The asso­

ciated persistent object store provides object storage and index structures. ViewRepos­

itory defines the interface for the management and manipulation of 2eus views. The 

type, SyntaxRule, hosts the abstract syntax used for interpreting the abstract syntac­

tic descriptions of type relations, structures, etc. 

// IDL source file: ZMSViewRepository.idl 

#include <ZMSView.idl> 

#include <ZVSLCE.idl> 

#include <PersistentObjectStore.idl> 

#include <ZMSGlobalDecl.idl> 

interface ViewRepository 

{ 

attribute ZVSLCE env; 

attribute short RepositorylD; 

attribute PersistentObjectStore POS; // pointer 

attribute short TRSize; 
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attribute Index VRIndex; // accessed via POS 

attribute SyntaxRule 

attribute SyntaxRule 

attribute SyntaxRule 

TypeRelations; 

DataAccess; 

Structure ; 

ReturnCode find(in ZVSLCE env, inout ZMSView view); 

ReturnCode create(in ZVSLCE env, in ZMSView view); 

ReturnCode delete(in ZVSLCE env, in ZMSView view); 

ReturnCode update(in ZVSLCE env, in ZMSView view); 

ReturnCode publish(in ZVSLCE env, in ZMSView view); 

ReturnCode subscribe(in ZVSLCE env, in string name); 

B.7.3 Thread, Request & Transaction 

A thread is the basic unit of computation within the ZM.S Server. A thread 

is spawned upon a request. The semantics of the request is translated to the logic 

carried by the thread. A thread may spawn multiple thread elements and coordinates 

the completion for each of its thread element. Each thread element has an attribute 

that links to the corresponding system thread supported and implemented at the 

hosting operating system level. 

// IDL source file: thread.idl 

#include <ZMSGlobalDecl.idl> 

«include <TimeServices.idl> 

#include <ThreadMgr.idl> 

«include <ThreadElementList.idl> 

interface Thread 

{ 

attribute ThreadStatus status; 

attribute string origin; // Created on behalf of the origin 



www.manaraa.com

197 

attribute ThreadMgr TM; // back pointer 

attribute Time CreationTime; 

attribute Time CloseTime;// Or the time the thread is aborted. 

readonly attribute ThreadElementList TEs; // Thread Elements 

ReturnCode GreateThread(in ZVSLCE env, in Thread thread); 

ReturnCode DeleteThread(in ZVSLCE env, in Thread thread); 

ReturnCode CloseThread(in ZVSLCE env, in Thread thread); 

ReturnCode AbortThread(in ZVSLCE env, in Thread thread); 

} ;  

// IDL source file: ThreadElement.idl 

#include <ZMSGlobalDecl.idl> 

#include <TimeServices.idl> 

#include <thread.idl> 

#include <ProcessMgmt.idl> 

interface ThreadElement : Thread 

{ 

attribute ZVSLCE env; 

attribute ThreadElementType TET; 

attribute Thread parent ; 

attribute Thread link;// point to the parent before split 

attribute Time CreationTime; 

attribute Time CloseTime; 

attribute SystemThread ST; // pointer 

ReturnCode CreateThreadElementCin ZVSLCE env, in ThreadElement TE); 

ReturnCode De1eteThreadElement(in ZVSLCE env, in ThreadElement TE); 

ReturnCode CloseThreadElement(in ZVSLCE env, in ThreadElement TE); 

ReturnCode AbortThreadElement(in ZVSLCE env, in ThreadElement TE); 

} ;  

All the requests and exchanged messages in the Z M S  are modeled by ZVSRequest. 

How these requests and messages are handled depends on the involved network servers 
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and clients. RequestSyntax identifies the command table in case the target network 

server is multi-lingual. The attributes, requestText and TextSize, contain the text and 

size of the request, respectively. 

// IDL source file: ZVSRequest.idl 

#include <ZMSGlobalDecl.idl> 

interface ZVSRequest 

{ 

attribute CommandTableEntry RequestSyntax; // pointer 

attribute void source; // Where the request is from 

attribute void target; // Where the request is going 

attribute string requestText; 

attribute long TextSize; 

} ;  

Some ZM.S requests may result in transactions. The ZM.S transactions are mod­

eled by ZMStransact ion.  A ZM.S t ransact ion has  a  ident i f ier  ass igned by the ZM.S.  

A transaction may result in a list of ZM.S threads. The attribute, TL, points to a 

list of threads associated with the transaction. 

// IDL source file: ZVStransaction.idl 

#include <ZVSRequest.idl> 

#include <ThreadList.idl> 

#include <TransactionHgr.idl> 

interface ZMSTrans act ion 

{ 

attribute long ID; 

attribute ZVSRequest request; // pointer 

attribute ThreadList TL; // pointer 



www.manaraa.com

199 

attribute TransactionHgr TM; // back pointer 

ReturnCode create(in ZMSTransaction transaction); 

ReturnCode commit(in ZMSTransaction transaction); 

ReturnCode abort(in ZMSTransaction transaction); 

B.7.4 Utilities 

We provide two generic classes, List and ListElement, for modeling linked lists of 

the ZM.S components. Different types of lists are created as subclasses of List. 

// IDL source file: List.idl 

#include <ListElement.idl> 

interface List 

{ 

attribute long count; 

attribute ListElement head; 

attribute ListElement tail; 

// pointer 

// pointer 

ListElement headO; 

ListElement tailO; 

ListElement tallyO ; 

ReturnCode append(in ListElement le); 

ReturnCode prepend(in ListElement le); 

ReturnCode remove(in ListElement le); 

ReturnCode has(in ListElement le); 

} ;  

// IDL source file: ListElement.idl> 

interface ListElement 
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attribute ListElement next ; 

attribute ListElement prev; 
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